Declaration of Performance

According to Annex III of the Regulation (EU) Nr.305/2011 (Construction Products Regulation).

Walraven Drop-in Anchor WDI2L

DoP No. 22/0630-WDI2L

 Unique identification code of the product-type: Walraven Drop-in Anchor WDI2L, Item numbers: 6103310625, 6103310830, 6103311040, 6103311250, 6103311665

2. Intended use/es:

Metal anchors for use in concrete according to EN 1992-4 in non-cracked concrete and static or quasi-static loads for fixing and/or supporting to concrete elements, such as lightweight suspended ceilings, as well as installations.

3. Manufacturer:

J. van Walraven Holding B.V., Industrieweg 5, 3641 RK Mijdrecht, The Netherlands

- 4. System/s of AVCP: System 1
- 5. European Assessment Document: EAD 330232-00-0601 "Mechanical Fasteners for use in concrete ", October 2016.

European Technical Assessment: ETA - 22/0630 (30/09/2022). Technical Assessment Body: Instituto de Ciencias de la Construcción Eduardo Torroja Notified body: 1219.

6. Declared performance/s:

Essential Characteristic	Performance	Harmonized Technical Specification
Safety in use (BWR 1)		
Characteristic resistance under static or quasi static loading	See Annex C1 to C3, ETA-22/0630	EAD 330232-00-0601
Displacements under tension and shear loads	See Annex C1 and C3, ETA-22/0630	EAD 330232-00-0601
Safety in case of fire (BWR 2)		
Reaction to Fire	Anchors satisfy requirements for Class A1	EN 13501-1

- 7. Appropriate Technical Documentation and/or Specific Technical Documentation: $N\!/\!A$
- 8. The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by: Frank Nijdam Co-CEO J. van Walraven Holding B.V. Signature

Date 01-04-2025 Place: Mijdrecht

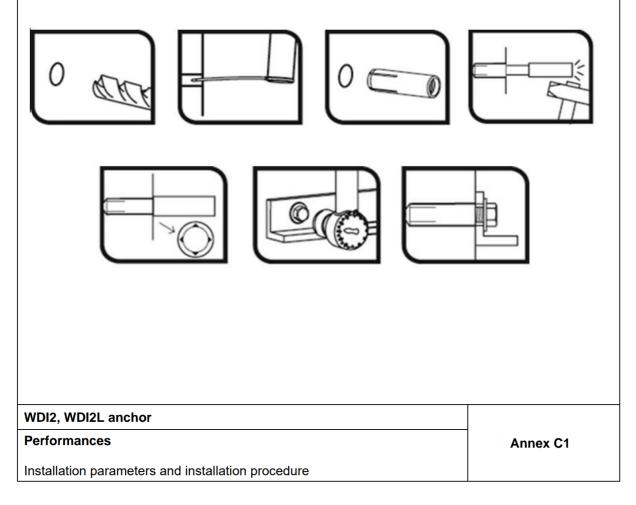

Declaration of Performance - Walraven Drop-in Anchor WDI2L - DoP No. 22/0630-WDI2L - 01 April 2025 - Page 1 of 4

Table C1: Installation parameters for WDI2, WDI2L anchor

			Performances						
Installation parameters		M6	M8	M10	M12	M16	M20		
do	Nominal diameter of drill bit:	[mm]	8	10	12	15	20	25	
D	Thread diameter:	[mm]	M6	M8	M10	M12	M16	M20	
d _f	Fixture clearance hole diameter ≤	[mm]	7	9	12	14	18	22	
T _{inst}	Maximum installation torque:	[Nm]	4	11	17	38	60	100	
ls,min	Minimum screwing depth:	[mm]	6	8	10	12	16	20	
ls,max	Maximum screwing depth:	[mm]	10	13	17	21	27	34	
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	100	100	130	160	
h1	Depth of drilled hole:	[mm]	27	33	43	54	70	86	
h _{nom}	Overall anchor embedm. depth in the concrete:	[mm]	25	30	40	50	65	80	
h _{ef}	Effective anchorage depth:	[mm]	25	30	40	50	65	80	
Smin	Minimum allowable spacing:	[mm]	60	60	80	100	130	160	
Cmin	Minimum allowable distance:	[mm]	105	105	140	175	230	280	

Installation process

Declaration of Performance - Walraven Drop-in Anchor WDI2L - DoP No. 22/0630-WDI2L - 01 April 2025 - Page 2 of 4

Table C2: Characteristic values to tension loads of design method A according to EN 1992-4 for WDI2, WDI2L anchor

ra	cteristic values of resistance to tension loads			Performances						
les	sign according to design method A		M6	M8	M10	M12	M16	M20		
nsi	on loads: steel failure									
k,s	Tension steel char. resistance, steel class 4.6:	[kN]	8,0	14,6	23,2	33,7	62,8	98,0		
, ¹⁾	Partial safety factor:	[-]	2,0	2,0	2,0	2,0	2,0	2,0		
k,s	Tension steel char. resistance, steel class 4.8:	[kN]	8,0	14,6	18,2	33,7	62,8	95,		
s ¹⁾	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5		
k,s	Tension steel char. resistance, steel class 5.6:	[kN]	10,1	18,3	18,2	42,2	78,5	122,		
₃ 1)	Partial safety factor:	[-]	2,0	2,0	1,5	2,0	2,0	2,0		
k,s	Tension steel char. resistance, steel class 5.8:	[kN]	10,1	17,6	18,2	35,1	65,0	95,		
,1)	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5		
k,s	Tension steel char. resistance, steel class 6.8	[kN]	12,1	17,6	18,2	35,1	65,0	95,		
s ¹⁾	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5		
k,s	Tension steel char. resistance, steel class 8.8	[kN]	13,1	17,6	18,2	35,1	65,0	95,		
,1) 5	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5		
nsi	on loads: pull-out failure in concrete									
k,p, u	Tension characteristic resistance in C20/25 uncracked concrete	[kN]	2)	2)	2)	2)	2)	²		
	C30/37	[-]	1,02	1,22	1,15	1,15	1,22	1,1		
	Increasing factor for N ⁰ _{Rk,p} : C40/50	[-]	1,04	1,41	1,29	1,28	1,41	1,3		
	C50/60	[-]	1,05	1,55	1,37	1,37	1,55	1,4		
	Installation safety factor:	[-]	1,2	1,2	1,4	1,4	1,4	1,4		
nsi	on loads: concrete cone and splitting fail	ure								
	Effective embedment depth:	[mm]	25	30	40	50	65	80		
r,N	Factor for uncracked concrete:	[-]			. 11	.0				
;	Installation safety factor:	[-]	1,2	1,2	1,4	1,4	1,4	1,4		
N	Concrete cono feiluro:	[mm]	3 x h _{ef}							
N	- Concrete cone failure:	[mm]	1.5 x h _{ef}							
sp	- Splitting failure:	[mm]	150	180	240	300	390	480		
,sp	- Splitting failure.	[mm]	75	90	120	150	195	240		
spla	acements under tension loads									
	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	2,4	3,4	6,0	7,4	17,8	18,		
0	Short term displacement under tension loads:	[mm]	0,1	0,1	0,1	0,1	0,1	0,1		
00	Long term displacement under tension loads:	[mm]	0,3	0,3	0,3	0,3	0,3	0,3		

WDI2, WDI2L anchor	
Performances	Annex C2
Characteristic values for tension loads	

Declaration of Performance - Walraven Drop-in Anchor WDI2L - DoP No. 22/0630-WDI2L - 01 April 2025 - Page 3 of 4

Table C3: Characteristic values to shear loads of design method A according to EN1992-4 for WDI2, WDI2L anchor

Characteristic values of resistance to shear loads of			Performances						
design according to design method A				M8	M10	M12	M16	M20	
Shear	loads: steel failure without lever arm								
V _{Rk,s}	Shear steel char. resistance, steel class 4.6:	[kN]	4,0	7,3	11,6	16,8	31,4	49,0	
γMs ¹⁾	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67	1,67	
V _{Rk,s}	Shear steel char. resistance, steel class 4.8:	[kN]	4,0	7,3	9,1	16,8	31,4	47,	
γ _{Ms} 1)	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
V _{Rk,s}	Shear steel char. resistance, steel class 5.6	[kN]	5,0	9,1	9,1	21,1	39,2	61,	
γMs ¹⁾	Partial safety factor:	[-]	1,67	1,67	1,25	1,67	1,67	1,6	
V _{Rk,s}	Shear steel char. resistance, steel class 5.8	[kN]	5.0	8,8	9,1	17,5	32,5	47,	
γ _{Ms} 1)	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
V _{Rk,s}	Shear steel char. resistance, steel class 6.8	[kN]	6,0	8,8	9,1	17,5	32,5	47,	
(Ms ¹⁾	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
V _{Rk,s}	Shear steel char. resistance, steel class 8.8:	[kN]	6,5	8,8	9,1	17,5	32,5	47,	
γMs ¹⁾	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
Shear	loads: steel failure with lever arm								
M ⁰ Rk,s	Characteristic bending moment, steel class 4.6	[Nm]	6,1	15.0	29,9	52,4	133,3	259	
γ _{Ms} ¹⁾	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67	1,6	
M ⁰ Rk,s	Characteristic bending moment, steel class 4.8	[Nm]	6,1	15.0	29,9	52,4	133,3	259	
γ _{Ms} 1)	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
M ⁰ Rk,s	Characteristic bending moment, steel class 5.6	[Nm]	7,6	18,8	37,4	65,5	166,6	324	
γMs ¹⁾	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67	1,6	
M ⁰ Rk,s	Characteristic bending moment, steel class 5.8	[Nm]	7,6	18,8	37,4	65,5	166,6	324	
γ _{Ms} 1)	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
M ⁰ Rk,s	Characteristic bending moment, steel class 6.8	[Nm]	9,2	22,5	44,9	78,7	199,9	389	
γMs ¹⁾	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
M ⁰ Rk,s	Characteristic bending moment, steel class 8.8	[Nm]	12,2	30,0	59,9	104,9	266,6	519	
γMs ¹⁾	Partial safety factor:)	[-]	1,25	1,25	1,25	1,25	1,25	1,2	
Shear	loads: concrete pryout failure								
k ₈	Pryout factor:	[-]	1,0	1,0	1,0	1,0	2,0	2,0	
γins	Installation safety factor:	[-]	1.0						
Shear	loads: concrete edge failure								
lf	Effective anchorage depth under shear loads:	[mm]	25	30	40	50	65	80	
d _{nom}	Outside anchor diameter:	[mm]	8	10	12	15	20	25	
γins	Installation safety factor:	[-]			1	,0			
Displa	acements under shear loads								
V	Service shear load in uncracked concrete C20/25 to C50/60:	[kN]	3,8	5,0	5,2	10,1	18,6	27,	
δ _{V0}	Short term displacement under shear loads:	[mm]	2,4	2,4	2,4	1,3	1,0	1,0	
δv∞	Long term displacement under shear loads:	[mm]	3,5	3,5	3,5	2,0	1,5	1,5	

WDI2, WDI2L anchor	
Performances	Annex C3
Characteristic values for shear load.	

Declaration of Performance - Walraven Drop-in Anchor WDI2L - DoP No. 22/0630-WDI2L - 01 April 2025 - Page 4 of 4

