## **Declaration of Performance**

According to Annex III of the Regulation (EU) Nr.305/2011 (Construction Products Regulation).

### Walraven Throughbolt Anchor WT1

DoP No. 21/0365-WT1

#### 1. Unique identification code of the product-type:

Walraven Throughbolt Anchor WT1, Item numbers: 608408080, 608408095, 608408115, 608410090, 608410115, 608410135, 608412110, 608412120, 608412150, 608416145

### 2. Intended use/es:

Metal anchors for use in concrete: for fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units.

#### 3. Manufacturer:

J. van Walraven Holding B.V., Industrieweg 5, 3641 RK Mijdrecht, The Netherlands

#### 4. System/s of AVCP:

System 1

**5. European Assessment Document:** EAD 330232-01-0601 "Mechanical Fasteners for use in concrete", December 2019.

European Technical Assessment: ETA - 21/0365 (08/02/2024).

Technical Assessment Body: Instituto de Ciencias de la Construcción Eduardo

Torroja (IETcc). **Notified body:** 1219.

#### 6. Declared performance/s:

| Essential Characteristic                                             | Performance                               | Harmonized Technical Specification |
|----------------------------------------------------------------------|-------------------------------------------|------------------------------------|
| Essential characteristics under static or quasi static loading       | See Annex C1, C2, C3, C5,<br>ETA-21/0365  | EAD 330232-01-0601                 |
| Displacements under tension and shear loads                          | See Annex C6, ETA-21/0365                 | EAD 330232-01-0601                 |
| Essential characteristics under seismic loading categories C1 and C2 | See Annex C7 and C9,<br>ETA-21/0365       | EAD 330232-01-0601                 |
| Resistance to fire                                                   | See Annex C11, ETA-21/0365                | EOTA TRO20                         |
| Reaction to Fire                                                     | Anchors satisfy requirements for Class A1 | EN 13501-1                         |

# 7. Appropriate Technical Documentation and/or Specific Technical Documentation: $\ensuremath{\mathsf{N/A}}$

8. The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Declaration of Performance - Walraven Throughbolt Anchor WT1 - DoP No. 21/0365-WT1 - 21 October 2025 - Page 1 of 10

Signed for and on behalf of the manufacturer by:

Frank Nijdam CCO J. van Walraven Holding B.V.

Date 21-10-2025 Place: Mijdrecht

Declaration of Performance - Walraven Throughbolt Anchor WT1 - DoP No. 21/0365-WT1 - 21 October 2025 - Page 2 of 10

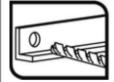
Table C1: Installation parameters for WT1 ST, WT1 SH, WT1 anchors

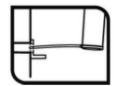
| 14-1             | 1-4!                                                          |      |                       |        | Perform | nances  |         |         |
|------------------|---------------------------------------------------------------|------|-----------------------|--------|---------|---------|---------|---------|
| Instai           | lation parameters                                             |      | М8                    | M10    | M12     | M16     | M20     | M24     |
| d₀               | Nominal diameter of drill bit:                                | [mm] | 8                     | 10     | 12      | 16      | 20      | 24      |
| dr               | Fixture clearance hole<br>diameter:                           | [mm] | 9                     | 12     | 14      | 18      | 22      | 26      |
| Tinst            | Nominal installation torque:                                  | [Nm] | 20 / 15 <sup>1)</sup> | 40     | 60      | 100     | 200     | 250     |
| L <sub>min</sub> | Minimum total length of the<br>bolt:                          | [mm] | 68                    | 82     | 98      | 119     | 140     | 175     |
| h <sub>1</sub>   | Depth of drilled hole:                                        | [mm] | 60                    | 75     | 85      | 105     | 125     | 155     |
| h <sub>nom</sub> | Overall anchor embedment<br>depth in the concrete:            | [mm] | 55                    | 68     | 80      | 97      | 114     | 143     |
| hef              | Effective anchorage depth:                                    | [mm] | 48                    | 60     | 70      | 85      | 100     | 125     |
| t <sub>fix</sub> | Thickness of fixture for washer DIN 125 $\leq$ <sup>2)</sup>  | [mm] | L - 66                | L – 80 | L – 96  | L - 117 | L - 138 | L - 170 |
| t <sub>fix</sub> | Thickness of fixture for<br>washers DIN 9021, DIN 440 ≤<br>2) | [mm] | L - 67                | L – 81 | L – 97  | L - 118 | L - 139 | L - 171 |
|                  | Minimum allowable spacing:                                    | [mm] | 40                    | 40     | 60      | 65      | 95      | 125     |
| Smin             | for edge distance c ≥                                         | [mm] | 55                    | 70     | 75      | 95      | 105     | 125     |
|                  | Minimum allowable distance:                                   | [mm] | 45                    | 45     | 55      | 70      | 95      | 125     |
| Cmin             | for spacing s ≥                                               | [mm] | 55                    | 90     | 110     | 115     | 105     | 125     |
| h <sub>min</sub> | Minimum thickness of<br>concrete member:<br>WT1 ST, WT1 SH    | [mm] | 100                   | 120    | 140     | 170     | 200     | 250     |
| h <sub>min</sub> | Minimum thickness of<br>concrete member:<br>WT1               | [mm] | 80                    | 90     | 105     | 130     | 150     |         |

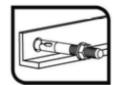
<sup>1)</sup> Respective values for anchors WT1 ST / WT1 SH, WT1

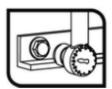
Table C2: Installation parameters for WT1 SST anchor

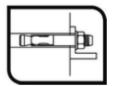
| Inetal           | lation narameters                                       |      |        | P      | erformanc | es      |         |
|------------------|---------------------------------------------------------|------|--------|--------|-----------|---------|---------|
| instai           | lation parameters                                       |      | M8     | M10    | M12       | M16     | M20     |
| d₀               | Nominal diameter of drill bit:                          | [mm] | 8      | 10     | 12        | 16      | 20      |
| dr               | Fixture clearance hole diameter:                        | [mm] | 9      | 12     | 14        | 18      | 22      |
| Tinst            | Nominal installation torque:                            | [Nm] | 15     | 30     | 60        | 100     | 200     |
| Lmin             | Minimum total length of the bolt:                       | [mm] | 68     | 82     | 98        | 119     | 140     |
| h <sub>1</sub>   | Depth of drilled hole:                                  | [mm] | 60     | 75     | 85        | 105     | 125     |
| hnom             | Overall anchor embedment depth in<br>the concrete:      | [mm] | 55     | 68     | 80        | 97      | 114     |
| h <sub>ef</sub>  | Effective anchorage depth:                              | [mm] | 48     | 60     | 70        | 85      | 100     |
| trix             | Thickness of fixture for washer DIN<br>125 ≤ 1)         | [mm] | L - 66 | L – 80 | L – 96    | L - 117 | L – 138 |
| t <sub>fix</sub> | Thickness of fixture for washers DIN 9021, DIN 440 ≤ 1) | [mm] | L - 67 | L – 81 | L – 97    | L - 118 | L – 139 |
| Smin             | Minimum allowable spacing:                              | [mm] | 42     | 47     | 57        | 75      | 100     |
| Cmin             | Minimum allowable distance:                             | [mm] | 47     | 52     | 62        | 75      | 90      |
| hmin             | Minimum thickness of concrete<br>member:                | [mm] | 100    | 120    | 140       | 170     | 200     |


<sup>1)</sup> L = total anchor length


| WT1 ST, WT1 SH, WT1, WT1 SST anchor |          |
|-------------------------------------|----------|
| Performances                        | Annex C1 |
| Installation parameters             |          |


 $Declaration \ of \ Performance - Walraven \ Throughbolt \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 3 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ Page \ 3 \ of \ 2025 \ - \ P$ 


<sup>2)</sup> L = total anchor length,


### Installation process











| WT1 | ST, | WT1 | SH, | WT1, | WT1 | SST | anchors |  |
|-----|-----|-----|-----|------|-----|-----|---------|--|
|     |     |     |     |      |     |     |         |  |

Performances

Installation procedure

Annex C2

 $Declaration \ of \ Performance - Walraven \ Throughbolt \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 4 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 4 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 4 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 4 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 4 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 4 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ Anchor \ WT1 - Page \ 4 \ of \ 10 \ An$ 

<u>Table C3: Essential characteristics under static or quasi-static tension loads</u> <u>according to design method A according to EN 1992-4 for WT1 ST, WT1 SH, WT1 anchors</u>

|                       | al characteristics und                                   |                |            |      |      | Perfor | mances                    |                           |       |
|-----------------------|----------------------------------------------------------|----------------|------------|------|------|--------|---------------------------|---------------------------|-------|
| Static to             | ension loads accordin                                    | g to design    | metnoa     | M8   | M10  | M12    | M16                       | M20                       | M24   |
|                       | loads: steel failure                                     |                |            |      |      |        |                           |                           |       |
| N <sub>Rk,s</sub>     | Characteristic resistance                                | :              | [kN]       | 18.1 | 31.4 | 40.4   | 72.7                      | 116.6                     | 179.2 |
| ΥMs                   | Partial safety factor:                                   |                | [-]        | 1.5  | 1.5  | 1.5    | 1.5                       | 1.5                       | 1.5   |
|                       | loads: pull-out failur                                   | e in concret   |            |      |      |        |                           |                           |       |
| WT1 ST                |                                                          |                |            |      |      |        |                           |                           |       |
| N <sub>Rk,p,ucr</sub> | Characteristic resistance<br>uncracked concrete:         | e in C20/25    | [kN]       | 9    | 18   | 20     | 36                        | 48                        | 55    |
| N <sub>Rk,p,cr</sub>  | Characteristic resistance<br>cracked concrete:           | e in C20/25    | [kN]       | 5    | 9.5  | 12     | 25                        | 32                        | 35    |
| WT1 SH                | anchor                                                   |                | ,          |      |      |        |                           |                           |       |
| NRk,p,ucr             | Characteristic resistance<br>uncracked concrete:         | e in C20/25    | [kN]       | 10   | 18   | _1)    | 36                        | 1)                        |       |
| $N_{Rk,p,cr}$         | Characteristic resistance in C20/25<br>cracked concrete: |                | [kN]       | 6    | 10   | 16     | 1)                        | 30                        |       |
| WT1 and               | hor                                                      |                |            |      |      |        |                           |                           |       |
| NRk,p,ucr             | Characteristic resistance<br>uncracked concrete:         | e in C20/25    | [kN]       | 10   | 18   | 28     | 34                        | 1)                        |       |
| $N_{Rk,p,cr}$         | Characteristic resistance<br>cracked concrete:           | e in C20/25    | [kN]       | 7    | 11   | 15     | 1)                        | 1)                        |       |
| γins                  | Installation safety factor                               | :              | [-]        | 1.2  | 1.0  | 1.0    | 1.0                       | 1.0                       | 1.2   |
|                       | In annual in a factor for                                | C30/37         | [-]        | 1.22 | 1.17 | 1.22   | 1.22                      | 1.17                      | 1.22  |
| ψ <sub>c</sub>        | Increasing factor for<br>N <sup>0</sup> Rk.p:            | C40/50         | [-]        | 1.41 | 1.31 | 1.41   | 1.41                      | 1.31                      | 1.41  |
|                       | IN-KK,p.                                                 | C50/60         | [-]        | 1.58 | 1.43 | 1.58   | 1.58                      | 1.43                      | 1.58  |
| Tension               | loads: concrete cone                                     | e and splitti  | ng failure |      |      |        |                           |                           |       |
| h <sub>ef</sub>       | Effective embedment der                                  | pth:           | [mm]       | 48   | 60   | 70     | 85                        | 100                       | 125   |
| k <sub>ucr,N</sub>    | Factor for uncracked con                                 |                | [-]        |      |      |        | 1.0                       |                           |       |
| k <sub>cr.N</sub>     | Factor for cracked concre                                | ete:           | [-]        |      |      |        | 7,7                       |                           |       |
| γins                  | Installation safety factor:                              |                | [-]        | 1.2  | 1.0  | 1.0    | 1.0                       | 1.0                       | 1.2   |
| Scr,N                 | Concrete cone failure:                                   |                | [mm]       |      |      | 3      | x h <sub>ef</sub>         |                           |       |
| C <sub>cr,N</sub>     | Controlle conte failule.                                 |                | [mm]       |      |      | 1.5    | x hef                     |                           |       |
| Scr,sp                | Splitting failure:                                       |                | [mm]       | 288  | 300  | 350    | 425/<br>510 <sup>1)</sup> | 500/<br>600 <sup>1)</sup> | 560   |
| C <sub>cr,sp</sub>    | .,                                                       | T //W/T4 OU 14 | [mm]       | 144  | 150  | 175    | 213/<br>255 <sup>1)</sup> | 250/<br>300 <sup>1)</sup> | 280   |

<sup>1)</sup> Respective values for anchors WT1 ST / WT1 SH, WT1

| WT1 ST, WT1 SH, WT1 anchors                                          |          |
|----------------------------------------------------------------------|----------|
| Performances                                                         | Annex C3 |
| Essential characteristics under static or quasi-static tension loads |          |

 $Declaration \ of \ Performance - Walraven \ Throughbolt \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 5 \ of \ 10 \ Anchor \ WT1 - 20 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 5 \ October \ 2025 \ - \ Page \ 2025 \ - \ Pag$ 

<u>Table C5: Essential characteristics under static or quasi-static shear loads of design method</u>
<u>A according to EN 1992-4 for WT1 ST, WT1 SH, WT1 anchors</u>

| Essen               | tial characteristics under st                    | tatic or  |      |      | Perform | nances |       |       |
|---------------------|--------------------------------------------------|-----------|------|------|---------|--------|-------|-------|
| _                   | static shear loads accordin<br>ı method A        | g to      | M8   | M10  | M12     | M16    | M20   | M24   |
| Shear               | loads: steel failure without                     | lever arm |      |      |         |        |       |       |
| V <sub>Rk,s</sub>   | Characteristic resistance:                       | [kN]      | 11.0 | 17.4 | 25.3    | 47.1   | 73.1  | 84.7  |
| k <sub>7</sub>      | Ductility factor:                                | [-]       |      |      | 1.0     | 00     |       |       |
| γMs                 | Partial safety factor:                           | [-]       | 1.25 | 1.25 | 1.25    | 1.25   | 1.25  | 1.25  |
| Shear               | loads: steel failure with lev                    | er arm    |      |      |         |        |       |       |
| M <sup>0</sup> Rk,s | Characteristic bending<br>moment:                | [Nm]      | 22.5 | 44.8 | 78.6    | 199.8  | 389.4 | 673.5 |
| ΥMs                 | Partial safety factor:                           | [-]       | 1.25 | 1.25 | 1.25    | 1.25   | 1.25  | 1.25  |
| Shear               | loads: concrete pryout failu                     | ure       |      |      |         |        |       |       |
| k <sub>8</sub>      | Pryout factor:                                   | [-]       | 1    | 2    | 2       | 2      | 2     | 2     |
| Yins                | Installation safety factor:                      | [-]       |      |      | 1.0     | 00     |       |       |
| Shear               | loads: concrete edge failur                      | е         |      |      |         |        |       |       |
| âr                  | Effective length of anchor<br>under shear loads: | [mm]      | 48   | 60   | 70      | 85     | 100   | 125   |
| dnom                | Outside anchor diameter:                         | [mm]      | 8    | 10   | 12      | 16     | 20    | 24    |
| Yins                | Installation safety factor:                      | [-]       |      |      | 1.0     | 00     |       |       |

# <u>Table C6 Essential characteristics under static or quasi-static shear loads of design method A according to EN 1992-4 for WT1 SST anchor</u>

|                  | ial characteristics under static                 |        |      | F    | Performanc | es    |       |  |
|------------------|--------------------------------------------------|--------|------|------|------------|-------|-------|--|
| static s         | hear loads according to design                   | method | М8   | M10  | M12        | M16   | M20   |  |
| Shear I          | oads: steel failure without lever                | arm    |      |      |            |       |       |  |
| $V_{Rk,s}$       | Characteristic resistance:                       | [kN]   | 11.9 | 18.9 | 27.4       | 55.0  | 85.9  |  |
| <b>k</b> 7       | Ductility factor:                                | [-]    |      |      | 1.00       |       |       |  |
| γMs              | Partial safety factor:                           | [-]    | 1.25 | 1.25 | 1.25       | 1.25  | 1.25  |  |
| Shear I          | oads: steel failure with lever an                | m      |      |      |            |       |       |  |
| $M^0_{Rk,s}$     | Characteristic bending moment:                   | [Nm]   | 26.2 | 52.3 | 91.7       | 233.1 | 454.3 |  |
| γMs              | Partial safety factor:                           | [-]    | 1.25 | 1.25 | 1.25       | 1.25  | 1.25  |  |
| Shear I          | oads: concrete pryout failure                    |        |      |      |            |       |       |  |
| k <sub>8</sub>   | Pryout factor:                                   | [-]    | 1    | 2    | 2          | 2     | 2     |  |
| Yins             | Installation safety factor:                      | [-]    |      |      | 1.00       |       |       |  |
| Shear I          | oads: concrete edge failure                      |        |      |      |            |       |       |  |
| έr               | Effective length of anchor under<br>shear loads: | [mm]   | 48   | 60   | 70         | 85    | 100   |  |
| d <sub>nom</sub> | Outside anchor diameter:                         | [mm]   | 8    | 10   | 12         | 16    | 20    |  |
| Yins             | Installation safety factor:                      | [-]    | 1.00 |      |            |       |       |  |

| WT1 ST, WT1 SH, WT1, WT1 SST anchors                               |          |
|--------------------------------------------------------------------|----------|
| Performances                                                       | Annex C5 |
| Essential characteristics under static or quasi-static shear loads |          |

 $Declaration \ of \ Performance - Walraven \ Throughbolt \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 6 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 6 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 6 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 6 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 6 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 6 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 6 \ of \ 10 \ Anchor \ WT1 - Page \ 6 \ of \ 10 \ Anchor \ WT1 - Page \ 6 \ of \ 10 \ Anchor \ WT1 - Page \ 8 \ Anchor \ WT1 - Page \ 8$ 

Table C7: Displacements under tension loads for WT1 ST, WT1 SH, WT1, WT1 SST anchors

|                       |                                                  |      | Performances |     |     |      |      |      |  |
|-----------------------|--------------------------------------------------|------|--------------|-----|-----|------|------|------|--|
| Displ                 | acements under tension loads                     |      | M8           | M10 | M12 | M16  | M20  | M24  |  |
| WT1 S                 | ST anchor                                        |      |              |     |     |      |      |      |  |
| N                     | Service tension load:                            | [kN] | 2.5          | 4.3 | 6.3 | 10.4 | 13.9 | 18.0 |  |
| $\delta_{\text{N0}}$  | Short term displacement:                         | [mm] | 1.1          | 0.7 | 1.0 | 0.4  | 1.6  | 0.4  |  |
| δν⊸                   | Long term displacement:                          | [mm] | 1.9          | 1.9 | 1.9 | 1.9  | 1.9  | 2.0  |  |
| WT1                   | SH anchor                                        |      |              |     |     |      |      |      |  |
| N                     | Service tension load:                            | [kN] | 2.5          | 4.3 | 6.3 | 10.4 | 13.9 |      |  |
| $\delta_{\text{N0}}$  | Short term displacement:                         | [mm] | 1.0          | 1.1 | 0.9 | 1.5  | 1.2  |      |  |
| $\delta_{N^{\varpi}}$ | Long term displacement:                          | [mm] | 1.9          | 1.9 | 1.9 | 1.9  | 1.9  |      |  |
| WT1 a                 | anchor                                           |      |              |     |     |      |      |      |  |
| N                     | Service tension load:                            | [kN] | 2.5          | 4.3 | 7.6 | 11.9 | 14.3 |      |  |
| δΝο                   | Short term displacement:                         | [mm] | 1.0          | 1.1 | 0.9 | 1.5  | 1.3  |      |  |
| δν⊸                   | Long term displacement:                          | [mm] | 1.6          | 1.6 | 1.6 | 1.6  | 1.6  |      |  |
| WT1                   | SST anchor                                       |      |              |     |     |      |      |      |  |
| N                     | Service tension load in non<br>cracked concrete: | [kN] | 5.7          | 7.6 | 8.7 | 15.3 | 19.5 |      |  |
| $\delta_{\text{N0}}$  | Short term displacement:                         | [mm] | 1.4          | 1.4 | 1.4 | 1.8  | 1.8  |      |  |
| $\delta_{N^{\infty}}$ | Long term displacement:                          | [mm] | 1.9          | 1.9 | 1.9 | 1.9  | 1.9  |      |  |
| WT1 S                 | SST anchor                                       |      |              |     |     |      |      |      |  |
| N                     | Service tension load in cracked<br>cocnrete:     | [kN] | 4.0          | 6.7 | 7.5 | 10.7 | 13.7 |      |  |
| $\delta_{\text{N0}}$  | Short term displacement:                         | [mm] | 1.2          | 1.3 | 1.3 | 1.3  | 1.3  |      |  |
| $\delta_{N^{\varpi}}$ | Long term displacement:                          | [mm] | 1.7          | 1.7 | 1.7 | 1.7  | 1.7  |      |  |

Table C8: Displacements under shear load for WT1 ST, WT1 SH, WT1, WT1 SST anchors

| Diant         | annunta undar abanc landa  |      | Performances |      |      |      |      |      |  |
|---------------|----------------------------|------|--------------|------|------|------|------|------|--|
| Dispi         | acements under shear loads |      | M8           | M10  | M12  | M16  | M20  | M24  |  |
| WT1 S         | ST anchor                  |      |              |      |      |      |      |      |  |
| V             | Service shear load:        | [kN] | 4.9          | 6.8  | 8.5  | 15.1 | 24.6 | 33.6 |  |
| δνο           | Short term displacement:   | [mm] | 1.0          | 1.5  | 1.8  | 1.9  | 3.1  | 1.4  |  |
| δ∨∞           | Long term displacement:    | [mm] | 1.5          | 2.3  | 2.7  | 2.9  | 4.7  | 2.1  |  |
| WT1 S         | SH anchor                  |      |              |      |      |      |      |      |  |
| V             | Service shear load:        | [kN] | 4.9          | 6.8  | 8.5  | 15.1 | 24.6 | -    |  |
| δνο           | Short term displacement:   | [mm] | 1.0          | 1.5  | 1.8  | 1.9  | 3.1  |      |  |
| δν∞           | Long term displacement:    | [mm] | 1.5          | 2.3  | 2.7  | 2.9  | 4.7  |      |  |
| WT1 a         | inchor                     |      |              |      |      |      | ,    |      |  |
| V             | Service shear load:        | [kN] | 4.9          | 6.8  | 8.5  | 15.1 | 24.6 |      |  |
| $\delta_{V0}$ | Short term displacement:   | [mm] | 1.0          | 1.5  | 1.8  | 1.9  | 3.1  |      |  |
| δν∞           | Long term displacement:    | [mm] | 1.5          | 2.3  | 2.7  | 2.9  | 4.7  |      |  |
| WT1 S         | SST anchor                 |      |              |      |      |      |      |      |  |
| V             | Service shear load:        | [kN] | 6.8          | 10.8 | 15.7 | 31.4 | 46.9 |      |  |
| δνο           | Short term displacement:   | [mm] | 1.9          | 1.6  | 1.6  | 2.2  | 2.2  |      |  |
| δν∞           | Long term displacement:    | [mm] | 2.4          | 2.4  | 2.4  | 3.3  | 3.3  |      |  |

| WT1 ST, WT1 SH, WT1, WT1 SST anchors                               |          |
|--------------------------------------------------------------------|----------|
| Performances                                                       | Annex C6 |
| Displacements under static or quasi-static tension and shear loads |          |

 $Declaration \ of \ Performance - Walraven \ Throughbolt \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 7 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 7 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 7 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 7 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 7 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 7 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 7 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ Anchor \ WT1 - Page \ 9 \ of \ 10 \ An$ 

<u>Table C9: Essential characteristics for seismic performance category C1 for WT1 ST, WT1 SH, WT1 anchors</u>

| Essential characteristics for seismic |                                          |      |           | Performances |      |      |       |     |  |  |
|---------------------------------------|------------------------------------------|------|-----------|--------------|------|------|-------|-----|--|--|
| performa                              | nce category C1                          |      | M8        | M10          | M12  | M16  | M20   | M24 |  |  |
| Steel tens                            | sion failure                             |      |           |              |      |      |       |     |  |  |
| NRk,s,C1                              | Characteristic tension steel<br>failure: | [kN] | 18.1      | 31.4         | 40.4 | 72.7 | 116.6 |     |  |  |
| γMs,N                                 | Partial safety factor:                   | [-]  | 1.5       | 1.5          | 1.5  | 1.5  | 1.5   |     |  |  |
| Steel she                             | ar failure                               |      |           |              |      |      |       |     |  |  |
| WT1 ST ar                             | nchor                                    |      |           |              |      |      |       |     |  |  |
| $V_{Rk,s,C1}$                         | Characteristic shear steel<br>failure:   | [kN] |           | 12.2         | 17.8 | 33.0 |       |     |  |  |
| WT1 SH ar                             | nchor                                    |      |           |              |      |      |       |     |  |  |
| VRk,s,C1                              | Characteristic shear steel<br>failure:   | [kN] | 6.6       | 12.5         | 18.9 | 35.4 | 54.8  |     |  |  |
| WT1 anch                              | or                                       |      |           |              |      |      |       |     |  |  |
| $V_{Rk,s,C1}$                         | Characteristic shear steel<br>failure:   | [kN] | 7.7       | 12.2         | 17.8 | 33.0 | 58.5  | -   |  |  |
| αgap                                  | Factor for annular gap:                  | [-]  |           |              | 0.5  |      |       |     |  |  |
| γMs,V                                 | Partial safety factor:                   | [-]  | 1.25      | 1.25         | 1.25 | 1.25 | 1.25  |     |  |  |
| Pull out fa                           | ailure                                   |      |           | ,            |      |      |       |     |  |  |
| WT1 ST ar                             | nchor                                    |      |           |              |      |      |       |     |  |  |
| N <sub>Rk,p,C1</sub>                  | Characteristic pull out failure:         | [kN] |           | 5.3          | 8.4  | 17.5 |       |     |  |  |
| WT1 SH ar                             | nchor                                    |      |           |              |      |      |       |     |  |  |
| NRk,p,C1                              | Characteristic pull out failure:         | [kN] | 6.0       | 9.0          | 16.0 | 25.0 | 30.0  |     |  |  |
| WT1 anch                              | or                                       |      |           |              |      |      |       |     |  |  |
| NRk,p,C1                              | Characteristic pull out failure:         | [kN] | 5.9       | 8.9          | 16.0 | 25.0 | 30.0  |     |  |  |
| Yins                                  | Installation safety factor:              | [-]  | 1.2       | 1.0          | 1.0  | 1.0  | 1.0   |     |  |  |
|                                       | cone failure                             |      |           |              |      |      |       | -   |  |  |
| h <sub>ef</sub>                       | Effective embedment depth:               | [mm] | 48        | 60           | 70   | 85   | 100   |     |  |  |
| S <sub>cr.N</sub>                     | Spacing:                                 | [mm] | 3 x her   |              |      |      |       |     |  |  |
| Ccr.N                                 | Edge distance:                           | [mm] | 1.5 x hef |              |      |      |       |     |  |  |
| Yins                                  | Installation safety factor:              | [-]  | 1.2       | 1.0          | 1.0  | 1.0  | 1.0   |     |  |  |
|                                       | pryout failure                           |      |           |              |      |      |       |     |  |  |
| k <sub>8</sub>                        | Pryout factor:                           | [-]  | 1         | 2            | 2    | 2    | 2     |     |  |  |
|                                       | edge failure                             | .,   |           |              |      |      |       |     |  |  |
| li                                    | Effective length of anchor:              | [mm] | 48        | 60           | 70   | 85   | 100   |     |  |  |
| d <sub>nom</sub>                      | Outside anchor diameter:                 | [-]  | 8         | 10           | 12   | 16   | 20    |     |  |  |

| WT1 ST, WT1 SH, WT1 anchors                                   |          |
|---------------------------------------------------------------|----------|
| Performances                                                  | Annex C7 |
| Essential characteristics for seismic performance category C1 |          |

 $Declaration \ of \ Performance - Walraven \ Throughbolt \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - DoP \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ 8 \ of \ 10 \ Anchor \ WT1 - Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025 \ - \ Page \ No. \ 21/0365-WT1 - 21 \ October \ 2025$ 

Table C11: Essential characteristics for seismic performance category C2 WT1 ST, WT1 SH, WT1 anchors

| Essential (                  | characteristics for seismic                                              |              |    |               | Perfor        | mances |               |     |
|------------------------------|--------------------------------------------------------------------------|--------------|----|---------------|---------------|--------|---------------|-----|
| performan                    | ice category C2                                                          |              | M8 | M10           | M12           | M16    | M20           | M24 |
| Steel tens                   | ion and shear failure                                                    |              |    |               |               |        |               |     |
| V <sub>Rk,s,C2</sub>         | Characteristic tension steel<br>failure:                                 | [kN]         |    | 31.4          | 40.4          | 72.7   | 116.6         |     |
| /Ms,N                        | Partial safety factor:                                                   | [-]          |    | 1.5           | 1.5           | 1.5    | 1.5           |     |
| / <sub>Rk,s,C2</sub>         | Characteristic shear steel<br>failure:                                   | [kN]         |    | 12.2          | 17.8          | 33.0   | 58.5          |     |
| Igap                         | Factor for annular gap                                                   | [-]          |    | 0.5           | 0.5           | 0.5    | 0.5           |     |
| Ms,V                         | Partial safety factor:                                                   | [-]          |    | 1.25          | 1.25          | 1.25   | 1.25          |     |
| Pull out fa                  |                                                                          |              |    |               |               |        |               |     |
| VT1 ST and                   | chor                                                                     |              |    |               |               |        |               |     |
| Rk,p,C2                      | Characteristic pull out failure:                                         | [kN]         |    |               | 5.2           | 8.9    |               |     |
| VT1 SH and                   | chor                                                                     |              |    |               |               |        |               |     |
| Rk,p,C2                      | Characteristic pull out failure:                                         | [kN]         |    |               | 5.9           | 16.3   | 17.2          |     |
| VT1 ancho                    | r                                                                        |              |    |               |               |        |               |     |
| Rk.p.C2                      | Characteristic pull out failure:                                         | [kN]         |    | 3.9           | 9.1           |        | 21.0          |     |
| ins                          | Installation safety factor:                                              | [-]          |    | 1.0           | 1.0           | 1.0    | 1.0           |     |
|                              | cone failure                                                             |              |    |               |               |        |               |     |
| n <sub>ef</sub>              | Effective embedment depth:                                               | [mm]         |    | 60            | 70            | 85     | 100           |     |
| Scr.N                        | Spacing:                                                                 | [mm]         |    |               | 3 x hef       |        |               |     |
| Ccr.N                        | Edge distance:                                                           | [mm]         |    | 1.5 x hef     |               |        |               |     |
| /ins                         | Installation safety factor:                                              | [-]          |    | 1.0           | 1.0           | 1.0    | 1.0           |     |
|                              | pryout failure                                                           |              |    |               | 1.0           | 1.0    | 1.0           |     |
| C8                           | Pryout factor:                                                           | [-]          |    | 2             | 2             | 2      | 2             |     |
|                              | edge failure                                                             | .,           |    |               |               |        |               |     |
| Y                            | Effective length of anchor:                                              | [mm]         |    | 60            | 70            | 85     | 100           |     |
|                              | Outside anchor diameter:                                                 |              |    | 10            | 12            | 16     | 20            |     |
| <sub>lnom</sub><br>Displacem |                                                                          | [-]          |    | 10            | 12            | 10     | 20            |     |
| NT1 ST and                   |                                                                          |              |    |               |               |        |               |     |
| N,C2 (DLS)                   | _ Displacement Damage                                                    | [mm]         |    |               | 2.34          | 3.99   |               |     |
| V C2 (DLS)                   | Limitation State:1)2)                                                    | [mm]         |    |               | 5.53          | 5.96   |               | -   |
| N,C2 (ULS)                   | Displacement Ultimate Limit                                              | [mm]         |    |               | 9.54          | 10.17  |               |     |
| 5v,c2 (ULS)                  | State:1)                                                                 | [mm]         |    |               | 9.08          | 10.66  |               |     |
| NT1 SH and                   | chor                                                                     |              |    |               |               |        |               |     |
| N,C2 (DLS)                   | _ Displacement Damage                                                    | _[mm]        |    |               | 6.79          | 5.21   | 5.72          |     |
| V C2 (DLS)                   | Limitation State:1)2)                                                    | [mm]         |    |               | 5.53          | 5.96   | 6.37          |     |
| N,C2 (ULS)                   | Displacement Ultimate Limit                                              | _[mm]        |    |               | 24.70         | 19.58  | 17,20         |     |
| V,C2 (ULS)                   | State:1)                                                                 | [mm]         |    |               | 9.08          | 10.66  | 12.32         |     |
| NT1 ancho                    |                                                                          | [1           |    | 0.45          | F 57          |        | 6.00          |     |
| N,C2 (DLS)                   | <ul> <li>Displacement Damage</li> <li>Limitation State: 1) 2)</li> </ul> | _[mm]        |    | 3.15          | 5.57          |        | 6.82          |     |
| V C2 (DLS)                   | Displacement Ultimate Limit                                              | [mm]<br>[mm] |    | 5.61<br>14.77 | 5.53<br>20.31 |        | 6.37<br>29.12 |     |
| 5 <sub>N,C2</sub> (ULS)      |                                                                          |              |    |               |               |        |               |     |

<sup>2)</sup> A small displacement may be required in the design in the case of displacements sensitive fastening of "rigid" supports. The characteristics resistance associated with such small displacements may be determined by linear interpolation or proportional reduction.

| WT1 ST, WT1 SH, WT1 anchors                                   |          |
|---------------------------------------------------------------|----------|
| Performances                                                  | Annex C9 |
| Essential characteristics for seismic performance category C2 |          |

Declaration of Performance - Walraven Throughbolt Anchor WT1 - DoP No. 21/0365-WT1 - 21 October 2025 - Page 9 of 10

<u>Table C13: Essential characteristics under fire exposure WT1 ST, WT1 SH, WT1 anchors anchors</u>

| Facarti                             | al abanastaniatiaa        | Performances         |      |                                                                                                                                                        |         |           |                      |                       |      |
|-------------------------------------|---------------------------|----------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------------------|-----------------------|------|
| Essenti                             | al characteristics und    | er fire expo         | sure | M8                                                                                                                                                     | M10     | M12       | M16                  | M20                   | M24  |
| Steel fa                            | ilure                     |                      |      |                                                                                                                                                        |         |           |                      |                       |      |
|                                     |                           | R30                  | [kN] | 0,4                                                                                                                                                    | 0,9     | 1,7       | 3,1                  | 4,9                   | 7,1  |
| N                                   | Characteristic tension    | R60                  | [kN] | 0,3                                                                                                                                                    | 0,8     | 1,3       | 2,4                  | 3,7                   | 5,3  |
| N <sub>Rk,s,fi</sub>                | resistance:               | R90                  | [kN] | 0,3                                                                                                                                                    | 0,6     | 1,1       | 2,0                  | 3,2                   | 4,6  |
|                                     |                           | R120                 | [kN] | 0,2                                                                                                                                                    | 0,5     | 0,8       | 1,6                  | 2,5                   | 3,5  |
|                                     |                           | R30                  | [kN] | 0,4                                                                                                                                                    | 0,9     | 1,7       | 3,1                  | 4,9                   | 7,1  |
| .,                                  | Characteristic shear      | R60                  | [kN] | 0,3                                                                                                                                                    | 8,0     | 1,3       | 2,4                  | 3,7                   | 5,3  |
| V <sub>Rk,s,fi</sub>                | resistance:               | R90                  | [kN] | 0,3                                                                                                                                                    | 0,6     | 1,1       | 2,0                  | 3,2                   | 4,5  |
|                                     |                           | R120                 | [kN] | 0,2                                                                                                                                                    | 0,5     | 0,8       | 1,6                  | 2,5                   | 3,5  |
|                                     |                           | R30                  | [Nm] | 0,4                                                                                                                                                    | 1,1     | 2,6       | 6,7                  | 13,0                  | 22,5 |
| M <sup>0</sup> Rk,s,fi              | Characteristic bending    | R60                  | [Nm] | 0,3                                                                                                                                                    | 1,0     | 2,0       | 5,0                  | 9,7                   | 16,8 |
| IVI~Rk,s,fi                         | resistance:               | R90                  | [Nm] | 0,3                                                                                                                                                    | 0,7     | 1,7       | 4,3                  | 8,4                   | 14,6 |
|                                     |                           | R120                 | [Nm] | 0,2                                                                                                                                                    | 0,6     | 1,3       | 3,3                  | 6,5                   | 11,2 |
| Pull out                            | failure                   |                      |      |                                                                                                                                                        |         |           |                      |                       |      |
| NRk,p,fi Characteristic resistance: |                           | R30<br>R60<br>e: R90 | [kN] | 1,3/1,53)                                                                                                                                              | 2,3     | 3,0/4,03) | 6,3                  | 7,5                   | 7,5  |
|                                     |                           | R120                 | [kN] | 1,0/1,23)                                                                                                                                              | 1,8     | 2,4/3,23) | 5,0                  | 6.0                   | 6.0  |
| Concret                             | te cone failure 2)        | 11120                | 17   | 1,0/1,2                                                                                                                                                | .,0     |           | , 0,0                | 0,0                   |      |
|                                     |                           | R30                  | 2.10 |                                                                                                                                                        | <i></i> | 7.4       | 40.0                 | 40.0                  | 24.4 |
| $N_{Rk,c,fi}$                       | Characteristic resistance | e: R60<br>R90        | [kN] | 2.9                                                                                                                                                    | 5,0     | 7,4       | 12,0                 | 18,0                  | 31,4 |
|                                     |                           | R120                 | [kN] | 2,3                                                                                                                                                    | 4,0     | 5,9       | 9,6                  | 14,4                  | 25,2 |
| S <sub>cr.N,fi</sub>                | Critical spacing:         | R30 to R120          | [mm] |                                                                                                                                                        |         | 4 x       | hef                  |                       |      |
| S <sub>min,fi</sub>                 | Minimum spacing:          | R30 to R120          | [mm] | 50                                                                                                                                                     | 60      | 70        | 85/128 <sup>1)</sup> | 100/150 <sup>1)</sup> | 125  |
| C <sub>cr.N,fi</sub>                | Critical edge distance:   | R30 to R120          | [mm] |                                                                                                                                                        |         | 2 x       | hef                  |                       |      |
| Cmin,fi                             | Minimum edge<br>distance: | R30 to R120          | [mm] | m] $c_{min} = 2 \times h_{ef}$ ; if fire attack comes from more than one side, to distance of the anchor has to be $\geq 300$ mm and $\geq 2 \times h$ |         |           | _                    |                       |      |
| Concret                             | te pry out failure        |                      |      |                                                                                                                                                        |         |           |                      |                       |      |
| k <sub>8</sub>                      | Pryout factor:            | R30 to R120          | [-]  | 1                                                                                                                                                      | 2       | 2         | 2                    | 2                     | 2    |

<sup>1)</sup> Respective values for anchors WT1 ST / WT1 SH, WT1

In absence of other national regulations the partial safety factor for resistance under fire exposure  $\gamma_{m,fi}$  = 1,0 is recommended

| WT1 ST, WT1 SH, WT1 anchors                   |           |
|-----------------------------------------------|-----------|
| Performances                                  | Annex C11 |
| Essential characteristics under fire exposure |           |

 $Declaration \ of \ Performance - Walraven \ Throughbolt \ Anchor \ WT1 - DoP \ No. \ 21/0365 - WT1 - 21 \ October \ 2025 \ - \ Page \ 10 \ of \ 10 \ October \ 2025 \ - \ Page \ 10 \ of \ 10 \ October \ 2025 \ - \ Page \ 10 \ of \ 10 \ October \ 2025 \ - \ Page \ 10 \ of \ 10 \ October \ 2025 \ - \ Page \ 10 \ of \ 10 \ October \ 2025 \ - \ Page \ 10 \ of \ 10 \ October \ 2025 \ - \ Page \ 2025 \ - \ Pag$ 

<sup>&</sup>lt;sup>2)</sup> As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed.