# **Declaration of Performance**

According to Annex III of the Regulation (EU) Nr.305/2011 (Construction Products Regulation).

### Walraven WB300

DoP No. 23/0311-WB300

#### 1. Unique identification code of the product-type:

Walraven Injection Anchor WB300, Item numbers: 6099030E, 6099030W, 6099031E, 6099040W

#### 2. Intended use/es:

For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings.

#### 3. Manufacturer:

J. van Walraven Holding B.V., Industrieweg 5, 3641 RK Mijdrecht, The Netherlands

#### 4. System/s of AVCP:

System 1

5. European Assessment Document: EAD 330087-01-0601 "Systems for post-installed rebar

connections with mortar", December 2020.

European Technical Assessment: ETA - 23/0311 (28/11/2024).

Technical Assessment Body: Technical and Test Institute for Construction Prague

Notified body: 1020.

#### 6. Declared performance/s:

| Essential Characteristic                          | Performance                              | Harmonized<br>Technical Specification |
|---------------------------------------------------|------------------------------------------|---------------------------------------|
| Mechanical resistance and stab                    | lity (BWR 1)                             |                                       |
| Bond strength of post-installed rebar             | See Annex C 1, C 2,<br>ETA-23/0311       | EAD 330087-01-0601                    |
| Reduction factor                                  | See Annex C 1, C 2,<br>ETA-23/0311       | EAD 330087-01-0601                    |
| Amplification factor for minimum anchorage length | See Annex C 1, C 2,<br>ETA-23/0311       | EAD 330087-01-0601                    |
| Safety in case of fire (BWR 2)                    |                                          |                                       |
| Reaction to Fire                                  | Rebars satisfy requirements for Class A1 | EAD 330087-01-0601                    |
| Resistance to fire                                | See Annex C 3, ETA-023/0311              | EAD 330087-01-0601                    |

# 7. Appropriate Technical Documentation and/or Specific Technical Documentation: N/A



8. The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by-

Frank Nijdam

Co-CEO

J. van Walraven Holding B.V.

Date 19-02-2025 Place: Mijdrecht

### Design bond strength of post-installed rebar fbd,PIR and fbd,PIR,100y for working life 50 and 100 years

 $f_{bd,PIR} = k_b \cdot f_{bd}$ 

k<sub>b</sub> = reduction factor

f<sub>bd</sub> = design bond strength of cast-in rebar according to EN 1992-1-1

**Table C1: Values** of the design bond strength of post installed rebar  $f_{bd,PIR} = f_{bd,PIR,100y}$  with reduction factor  $k_b = k_{b,100y}$  for hammer drilling or dustless drilling methods for good bond conditions

|                       | Replaced in the replaced and re |        |        |        |         |        |        |        |        |        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|
|                       | Rebar Ø 8 to 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |         |        |        |        |        |        |
| Conci                 | rete class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C12/15 | C16/20 | C20/25 | C25/30  | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| $k_b$                 | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,0    | 1,0    | 1,0    | 1,0     | 1,0    | 0,90   | 0,82   | 0,76   | 0,71   |
| $\mathbf{f}_{bd,PIR}$ | [N/mm <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,6    | 2,0    | 2,3    | 2,7     |        |        | 3,0    |        |        |
|                       | Rebar Ø 14 to 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |        |         |        |        |        |        |        |
| Conci                 | rete class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C12/15 | C16/20 | C20/25 | C25/30  | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| $k_b$                 | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,0    | 1,0    | 1,0    | 1,0     | 0,89   | 0,90   | 0,82   | 0,76   | 0,71   |
| $f_{bd,PIR}$          | [N/mm <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,6    | 2,0    | 2,3    | 2       | ,7     |        | 3      | ,0     |        |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        | Rebar Ø | 18     |        |        |        |        |
| Conci                 | rete class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C12/15 | C16/20 | C20/25 | C25/30  | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| $k_b$                 | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,0    | 1,0    | 1,0    | 1,0     | 0,89   | 0,80   | 0,73   | 0,76   | 0,71   |
| $\mathbf{f}_{bd,PIR}$ | [N/mm <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,6    | 2,0    | 2,3    | 2,7 3,0 |        |        |        | ,0     |        |
| Rebar Ø 20 to 25      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |         |        |        |        |        |        |
| Conci                 | rete class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C12/15 | C16/20 | C20/25 | C25/30  | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| $k_b$                 | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,0    | 1,0    | 1,0    | 1,0     | 0,89   | 0,80   | 0,73   | 0,67   | 0,63   |
| $\mathbf{f}_{bd,PIR}$ | [N/mm <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,6    | 2,0    | 2,3    | 3 2,7   |        |        |        |        |        |

Tabulated values are valid for good bond conditions according to EN 1992-1-1. For all other bond conditions multiply the values by 0,7.

Table C2: Amplification factor for minimum anchorage length

| Rebar | Amplification                                  | Concrete class |        |        |        |        |        |        |        |        |
|-------|------------------------------------------------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|       | factor                                         | C12/15         | C16/20 | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| Ø 8   |                                                | 1,0            | 1,0    | 1,0    | 1,0    | 1,1    | 1,0    | 1,0    | 1,0    | 1,0    |
| Ø 10  |                                                | 1,0            | 1,0    | 1,0    | 1,0    | 1,1    | 1,0    | 1,0    | 1,0    | 1,0    |
| Ø 12  |                                                | 1,0            | 1,0    | 1,0    | 1,0    | 1,1    | 1,1    | 1,0    | 1,0    | 1,0    |
| Ø 14  |                                                | 1,0            | 1,0    | 1,0    | 1,0    | 1,0    | 1,1    | 1,0    | 1,0    | 1,0    |
| Ø 16  | ~ ~                                            | 1,0            | 1,0    | 1,0    | 1,0    | 1,0    | 1,1    | 1,1    | 1,0    | 1,0    |
| Ø 18  | $\alpha_{\text{lb}} = \alpha_{\text{lb},100y}$ | 1,0            | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    |
| Ø 20  |                                                | 1,0            | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    |
| Ø 22  |                                                | 1,0            | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    |
| Ø 24  |                                                | 1,0            | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    |
| Ø 25  |                                                | 1,0            | 1,0    | 1,0    | 1,1    | 1,0    | 1,0    | 1,0    | 1,0    | 1,0    |

| WB300, WB300W, WB300T for rebar connection  |           |
|---------------------------------------------|-----------|
| Performances                                | Annex C 1 |
| Design values of the ultimate bond strength |           |
| for hammer or dustless drilling             |           |

Declaration of Performance - Walraven Injection Anchor WB300 - DoP No. 23/0311-WB300 - 19 February 2025 - Page 3 of 5

### Design bond strength of post-installed rebar $f_{bd,PIR}$ and $f_{bd,PIR,100y}$ for working life 50 and 100 years

 $f_{bd,PIR} = k_b \cdot f_{bd}$ 

k<sub>b</sub> = reduction factor

f<sub>bd</sub> = design bond strength of cast-in rebar according to EN 1992-1-1

**Table C3:** Values of the design bond strength of post installed rebar  $f_{bd,PIR} = f_{bd,PIR,100y}$  with reduction factor  $k_b = k_{b,100y}$  for diamond core drilling methods for good bond conditions

|                       | Rebar Ø 8 to 10      |        |         |        |           |        |        |        |        |        |
|-----------------------|----------------------|--------|---------|--------|-----------|--------|--------|--------|--------|--------|
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> <sub>b</sub> | [-]                  | 1,0    | 1,0     | 1,0    | 1,0       | 1,0    | 1,0    | 0,91   | 0,84   | 0,79   |
| $f_{bd,PIR}$          | [N/mm <sup>2</sup> ] | 1,6    | 2,0     | 2,3    | 2,7       | 3,0    |        | 3      | ,4     |        |
|                       | Rebar Ø 12           |        |         |        |           |        |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| $k_b$                 | [-]                  | 1,0    | 1,0     | 1,0    | 1,0       | 1,0    | 0,90   | 0,82   | 0,76   | 0,71   |
| $f_{bd,PIR}$          | [N/mm <sup>2</sup> ] | 1,6    | 2,0     | 2,3    | 2,7       |        |        | 3,0    |        |        |
|                       |                      |        |         |        | Rebar Ø   | 14     |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> b            | [-]                  | 1,0    | 1,0     | 1,0    | 1,0       | 0,89   | 0,90   | 0,82   | 0,76   | 0,71   |
| $f_{bd,PIR}$          | [N/mm²]              | 1,6    | 2,0     | 2,3    | 2         | ,7     |        | 3      | ,0     |        |
|                       |                      |        |         |        | Rebar Ø   | 16     |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> b            | [-]                  | 1,0    | 1,0     | 1,0    | 1,0       | 0,89   | 0,80   | 0,73   | 0,67   | 0,63   |
| f <sub>bd,PIR</sub>   | [N/mm²]              | 1,6    | 2,0     | 2,3    |           |        | 2      | ,7     |        |        |
|                       |                      |        |         |        | Rebar Ø   |        |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> b            | [-]                  | 1,0    | 1,0     | 1,0    | 0,86      | 0,89   | 0,80   | 0,73   | 0,67   | 0,63   |
| f <sub>bd,PIR</sub>   | [N/mm <sup>2</sup> ] | 1,6    | 2,0     | 2,     |           |        |        | 2,7    |        |        |
|                       |                      |        |         |        | Rebar Ø 2 |        |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> b            | [-]                  | 1,0    | 1,0     | 1,0    | 0,86      | 0,76   | 0,69   | 0,63   | 0,58   | 0,54   |
| f <sub>bd,PIR</sub>   | [N/mm <sup>2</sup> ] | 1,6    | 2,0     |        |           |        | 2,3    |        |        |        |
|                       |                      |        |         |        | Rebar Ø 2 |        |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> b            | <u> </u>             | 1,0    | 1,0     | 0,86   | 0,86      | 0,76   | 0,69   | 0,63   | 0,58   | 0,54   |
| f <sub>bd,PIR</sub>   | [N/mm <sup>2</sup> ] | 1,6    | 2,      |        |           |        | 2      | ,3     |        |        |
|                       |                      |        |         |        | Rebar Ø 2 |        |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> b            | [-]                  | 1,0    | 1,0     | 0,86   | 0,74      | 0,66   | 0,59   | 0,54   | 0,58   | 0,54   |
| f <sub>bd,PIR</sub>   | [N/mm <sup>2</sup> ] | 1,6    | 2,0 2,3 |        |           |        |        |        |        |        |
|                       |                      |        |         |        | Rebar Ø 2 |        |        |        |        |        |
| Concr                 | ete class            | C12/15 | C16/20  | C20/25 | C25/30    | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| <b>k</b> b            | [-]                  | 1,0    | 1,0     | 0,86   | 0,74      | 0,66   | 0,59   | 0,54   | 0,50   | 0,47   |
| $f_{bd,PIR}$          | [N/mm <sup>2</sup> ] | 1,6    | 1,6     |        |           |        |        |        |        |        |

Tabulated values are valid for good bond conditions according to EN 1992-1-1. For all other bond conditions multiply the values by 0,7.

Table O4. Ansalification factor for uninincome analysis as le

 Table C4: Amplification factor for minimum anchorage length

| Rebar     | Amplification                    | Concrete class                                          |     |     |     |     |     |     |     |        |
|-----------|----------------------------------|---------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--------|
|           | factor                           | C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 |     |     |     |     |     |     |     | C50/60 |
| Ø 8 to 25 | $\alpha_{lb} = \alpha_{lb,100y}$ | 1,0                                                     | 1,0 | 1,0 | 1,0 | 1,1 | 1,0 | 1,0 | 1,0 | 1,0    |

| WB300, WB300W, WB300T for rebar connection  |           |
|---------------------------------------------|-----------|
| Performances                                | Annex C 2 |
| Design values of the ultimate bond strength |           |
| for diamond core drilling                   |           |

# Design values of the bond strength $f_{bk,fi}$ and $f_{bk,fi,100y}$ under fire exposure for hammer or dustless drilling for working life 50 and 100 years

The design value of the bond strength  $f_{bd,fi}$  =  $f_{bd,fi,100y}$  under fire exposure has to be calculated according the following equation:

$$f_{bd,fi}(\theta) = f_{bd,fi,100} \ (\theta) = k_{b,fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{M,fi}}$$

where:  $\theta \le 308.9^{\circ}\text{C}$   $k_{b,\text{fi}}(\theta) = 31898 \cdot \theta^{-2,006} / (f_{bd,\text{PIR}} \cdot 4.3) \le 1$ 

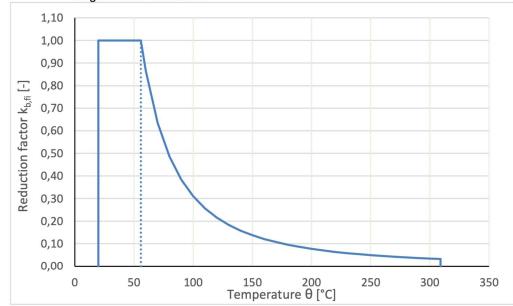
 $\theta > 308,9^{\circ}C$   $k_{b,fi}(\theta) = 0$ 

with:

 $k_{b,fi}(\theta)$  reduction factor in case of fire  $(\theta)$  temperature in °C in the mortar layer

 $f_{bd,PIR}$  design value of the bond strength in N/mm<sup>2</sup> according to Table C1 considering the

concrete class, the rebar diameter, the drilling method and the bond conditions according


to EN 1992-1-1:2004+AC:2010

γ<sub>c</sub> partial safety factor according to EN 1992-1-1:2004+AC:2010

 $\gamma_{M,fi}$  partial safety factor according to EN 1992-1-2:2004+AC:2008+A1:2019

The anchorage length shall be determined in accordance with EN 1992-1-1:2004+AC:2010 equation (8.3) using the bond strength  $f_{bd,fl}(\theta)$ .

**Figure C1:** Example of the graph of reduction factor  $k_f(\theta)$  for concrete strength class C20/25 for good bond conditions



| WB300, WB300W, WB300T for rebar connection             |            |
|--------------------------------------------------------|------------|
| Performances                                           | Annex C 3  |
| Design values of the bond strength under fire exposure | , amex e e |
| for hammer or dustless drilling                        |            |