Declaration of Performance

According to Annex III of the Regulation (EU) Nr.305/2011 (Construction Products Regulation).

Walraven WB300

DoP No. 23/0312-WB300

1. Unique identification code of the product-type:

Walraven Injection Anchor WB300, Item numbers: 6099030E, 6099030W, 6099031E, 6099040W

2. Intended use/es:

For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units.

3. Manufacturer:

J. van Walraven Holding B.V., Industrieweg 5, 3641 RK Mijdrecht, The Netherlands

4. System/s of AVCP:

System 1

5. European Assessment Document: EAD 330076-01-0604 "Metal injection anchors for use in

masonry", May 2021.

European Technical Assessment: ETA - 23/0312 (28/11/2024).

Technical Assessment Body: Technical and Test Institute for Construction Prague

Notified body: 1020.

6. Declared performance/s:

Essential Characteristic	Performance	Harmonized Technical Specification
Mechanical resistance and stab		Toomingar o poomogation
Characteristic resistance for tension and shear loads	See Annex C 1 to C 5, ETA-23/0312	EAD 330076-01-0604
Reduction factor for job site test (ß – factor)	See Annex C 1 to C 5, ETA-23/0312	EAD 330076-01-0604
Èdge distances and spacing	See Annex B 8, B 9	EAD 330076-01-0604
Displacement under shear and tension loads	See Annex C 1 to C 5	EAD 330076-01-0604
Durability	See Annex A3	EAD 330076-01-0604
Safety in case of fire (BWR 2)		
Reaction to Fire	Anchors satisfy requirements for Class A1	EN 13501-1

7. Appropriate Technical Documentation and/or Specific Technical Documentation: $\ensuremath{\text{N/A}}$

8. The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Frank Nijdam Co-CEO

J. van Walraven Holding B.V.

Date 19-02-2025 Place: Mijdrecht

Anchor rods $N_{Rk} = V_{Rk} [kN]^{-1}$ Base								Internal threaded sockets N _{Rk} = V _{Rk} [kN] ¹⁾						
material	·	Jse cor d/d,		3	Use conditions w/w				Use conditions d/d, w/d			Use conditions w/w		
	M8	M10	M12	M16	M8	M10	M12	M16	M8	M10	M12	M8	M10	M12
Sleeve	16/85	16/85	16/85	20/85	16/85	16/85	16/85	20/85	16/85	20/85	20/85	16/85	20/85	20/85
Brick N° 1	1,5	1,5	1,5	2,0	1,5	1,5	1,5	2,0	1,5	2,5	3,5	1,5	2,5	3,5
Brick N° 2	0,6	0,75	0,75	1,5	0,6	0,75	0,75	1,2	1,5	1,2	0,9	1,5	1,2	0,9
Brick N° 3	1,2	1,5	1,5	1,5	1,2	1,2	1,2	1,5	-	-	-	-	-	-
Brick N° 4	2,0	1,5	1,5	2,0	2,0	1,5	1,5	2,0	0,5	0,9	0,9	0,5	0,9	0,9
Brick N° 5	0,6	0,5	0,5	0,6	0,6	0,5	0,6	0,6	-	-	-	-	-	-
Brick N° 6	0,6	-	1-1	0,6	0,5	-	-	0,5	-	-	-	-	-	-
Brick N° 7	2,0	1,5	1,5	1,5	1,5	1,2	1,2	1,2	1,5	2,0	2,0	1,2	1,5	2,0
Brick N° 8	0,5	0,9	0,9	0,5	0,5	0,75	0,75	0,5		0,75	0,4	7-	0,6	0,6
Brick N° 9	0,6	1,2	1,2	1,2	0,5	0,9	0,9	0,9	-	0,3	0,5	-	0,3	0,5
Brick N° 10	0,5	0,3	0,3	-	0,5	0,3	0,3	•	0,5	0,3	0,6	0,5	0,3	0,6

 $^{^{1)}}$ For design according TR 054: N_{Rk} = $N_{Rk,p}$ = $N_{Rk,b}$ = $N_{Rk,p}$ according to TR 054 For $V_{Rk,s}$ see Annex C1, Table C2; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C2: Characteristic resistance under shear loading – steel failure

Size			М8	M10	M12	M16	Partial safety factor
0126			IVIO	14110	141 12	14110	γMs
Characteristic shear resistance							
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	1,25
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	1,25
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	1,5
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	1,56
Stainless steel grade A4-80	V _{Rk,s}	[kN]	15	23	34	63	1,33
Stainless steel grade 1.4529 strength class 70	V _{Rk,s}	[kN]	13	20	30	55	1,25
Stainless steel grade 1.4565 strength class 70	V _{Rk,s}	[kN]	13	20	30	55	1,56
Characteristic bending moment							
Steel grade 5.8	M _{Rk,s}	[N.m]	19	37	66	166	1,25
Steel grade 8.8	M _{Rk,s}	[N.m]	30	60	105	266	1,25
Steel grade 10.9	M _{Rk,s}	[N.m]	37	75	131	333	1,5
Stainless steel grade A2-70, A4-70	M _{Rk,s}	[N.m]	26	52	92	233	1,56
Stainless steel grade A4-80	M _{Rk,s}	[N.m]	30	60	105	266	1,33
Stainless steel grade 1.4529 strength class 70	M _{Rk,s}	[N.m]	26	52	92	233	1,25
Stainless steel grade 1.4565 strength class 70	M _{Rk,s}	[N.m]	26	52	92	233	1,56

Table C3: Displacements under tension and shear load

Base material	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{V0} [mm]	δ _{ν∞} [mm]
Solid bricks	N //	0,6	1,2	1,0 ¹⁾	1,5 ¹⁾
Perforated and hollow bricks	N _{Rk} / (γ _F · γ _M)	0,14	0,28	1,0 ¹⁾	1,5 ¹⁾

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to TR 053 with sleeve

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	N° 7	N° 8	N° 9	N° 10
β - factor – d/d, w/d	0,65	0,26	0,65	0,6	0,65	0,59	0,62	0,22	0,36	0,42
β - factor – w/w	0,58	0,22	0,58	0,53	0,58	0,53	0,55	0,18	0,31	0,37

WB300, WB300W, WB300T	
for masonry	
Performances	Annex C 1
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

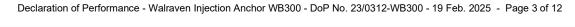


Table C5: Characteristic resistance under tension and shear loading without sleeve

		Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾										
Base material	Use conditions d/d, w/d Use conditions w/w										ons	
	M6	M8	M10	M12	M16	M6	M8	M10	M12	M16		
Brick N° 1	2,0	2,0 2,0 2,0 2,0 2,5				2,0	2,0	2,0	1,5	2,0		
Brick N° 2	1,2	0,9	1,5	0,9	1,2		0,9	1,2	0,75	1,2		

For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C6: Characteristic resistance under shear loading - steel failure

Size			М6	M8	M10	M12	M16	Partial safety factor γ _{Ms}
Characteristic shear resistance								
Steel grade 5.8	V _{Rk,s}	[kN]	5	9	15	21	39	1,25
Steel grade 8.8	V _{Rk,s}	[kN]	8	15	23	34	63	1,25
Steel grade 10.9	V _{Rk,s}	[kN]	10	18	29	42	79	1,5
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	7	13	20	30	55	1,56
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	8	15	23	34	63	1,33
Stainless steel grade 1.4529 strength class 70	V _{Rk,s}	[kN]	7	13	20	30	55	1,25
Stainless steel grade 1.4565 strength class 70	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
Characteristic bending moment								
Steel grade 5.8	M _{Rk,s}	[N.m]	8	19	37	66	166	1,25
Steel grade 8.8	M _{Rk,s}	[N.m]	12	30	60	105	266	1,25
Steel grade 10.9	M _{Rk,s}	[N.m]	15	37	75	131	333	1,5
Stainless steel grade A2-70, A4-70	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56
Stainless steel grade A4-80	M _{Rk,s}	[N.m]	12	30	60	105	266	1,33
Stainless steel grade 1.4529 strength class 70	M _{Rk,s}	[N.m]	11	26	52	92	233	1,25
Stainless steel grade 1.4565 strength class 70	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56

Table C7: Displacements under tension and shear load

Base material	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{V0} [mm]	δ _{V∞} [mm]
Brick N° 1	N. //	0,1	0,2	0,5 1)	0,7 1)
Brick N° 2	$N_{Rk} / (\gamma_F \cdot \gamma_M)$	0,1	0,2	0,1 1)	0,2 1)

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C8: β - factors for job site tests according to TR 053 without sleeve

Brick N°	N° 1	N° 2
β - factor – d/d, w/d	0,65	0,25
β - factor – w/w	0,58	0,22

- 1		
	WB300, WB300W, WB300T	
	for masonry	
	Performances	Annex C 2
	Characteristic resistance, displacement	
	β-factors for job site testing under tension load	

Table C9: Characteristic resistance under tension and shear loading with sleeve WB300W with installation temperature < -10°C

Base		Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾								Internal threaded sockets N _{Rk} = V _{Rk} [kN] ¹⁾					
material	l lee conditions			Use conditions w/w				Use conditions d/d, w/d			Use conditions w/w				
	M8	M10	M12	M16	M8	M10	M12	M16	M8	M10	M12	M8	M10	M12	
Sleeve	16/85	16/85	16/85	20/85	16/85	16/85	16/85	20/85	16/85	20/85	20/85	16/85	20/85	20/85	
Brick N° 1	1,2	1,2	1,2	1,5	1,2	1,2	1,2	1,5	1,2	2,0	3,0	1,2	2,0	3,0	
Brick N° 2	0,5	0,6	0,6	1,2	0,5	0,6	0,6	0,9	1,2	0,9	0,75	1,2	0,9	0,75	
Brick N° 3	0,9	1,2	1,2	1,2	0,9	0,9	0,9	1,2	-	-	-	-	-	-	
Brick N° 4	1,5	1,2	1,2	1,5	1,5	1,2	1,2	1,5	0,4	0,75	0,75	0,4	0,75	0,75	
Brick N° 5	0,5	0,4	0,4	0,5	0,5	0,4	0,5	0,5	-	-	-	-	-	-	
Brick N° 6	0,5	-	1-	0,5	0,4	-	-	0,4	-	-	-	1-	-	-	
Brick N° 7	1,5	1,2	1,2	1,2	1,2	0,9	0,9	0,9	1,2	1,5	1,5	0,9	1,2	1,5	
Brick N° 8	0,4	0,75	0,75	0,4	0,4	0,6	0,6	0,4	-	0,6	0,3	-	0,5	0,5	
Brick N° 9	0,5	0,9	0,9	0,9	0,4	0,75	0,75	0,75	-	-	0,4	-	-	0,4	
Brick N° 10	0,4	1-1		-	0,4	-	-	-	0,4	-	0,5	0,4	-	0,5	

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C10: Characteristic resistance under tension and shear loading without sleeve WB300W with installation temperature < -10°C

WB300W with installation temperature < -10 C											
		Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾									
Base material		Use conditions d/d, w/d				Use conditions w/w					
	M6	M8	M10	M12	M16	M6	M8	M10	M12	M16	
Brick N° 1	1,5	1,5 1,5 1,5 1,5 2,0 1,2 1,5						1,5	1,2	1,5	
Brick N° 2	0,9	0,75	1,2	0,75	0,9		0,75	0,9	0,6	0,9	

For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p}, N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C11: Characteristic resistance under shear loading - steel failure

Size	M6	M8	M10	M12	M16	Partial safety factor γ _{Ms}			
See Annex C 1 or C 2									

Table C12: Displacements under tension and shear load

Base material	F [kN]		δ _{N∞} [mm]	δν ₀ [mm]	δ _{ν∞} [mm]					
	See Annex C 1 or C 2									

Table C13: β - factors for job site tests according to TR 053 with sleeve WB300W with installation temperature < -10°C

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	N° 7	N° 8	N° 9	N° 10
β - factor – d/d, w/d	0,62	0,24	0,62	0,57	0,62	0,57	0,6	0,20	0,34	0,40
β - factor – w/w	0,55	0,21	0,55	0,51	0,55	0,51	0,53	0,18	0,30	0,36

Table C14: β - factors for job site tests according to TR 053 without sleeve WB300W with installation temperature < -10°C

Brick N°	N° 1	N° 2
β - factor – d/d, w/d	0,62	0,24
β - factor – w/w	0,55	0,21

WB300W	
for masonry	
Performances	Annex C 3
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

Table C15:	Characteristic	resistance	under f	ension a	nd shear	loading

Base												
material	U	Use conditions d/d Use conditions w/d Use conditions w/w										
	M8	M10	M12	M16	M8	M10	M12	M16	M8	M10	M12	M16
Brick N° 11	0,75	0,75	0,9	1,5	0,6	0,75	0,75	1,2	0,6	0,75	0,75	1,2
Brick N° 12	1,2	1,5	2,0	3,5	0,9	1,2	1,5	2,5	0,9	1,2	1,5	2,5
Brick N° 13	3,0	3,0	4,0	5,0	2,5	2,5	3,5	4,0	2,0	2,0	3,0	3,5

¹⁾ For design according TR 054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054 For $V_{Rk,s}$ see Annex C1, Table C2; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C16: Characteristic resistance under shear loading – steel failure

Size			М8	M10	M12	M16	Partial safety factor γ _{Ms}
Characteristic shear resistance							
Steel grade 4.6	V _{Rk,s}	[kN]	7	11	17	31	1,67
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	1,25
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	1,25
Steel grade 10.9	V _{Rk,s}	[kN]	18	29	42	79	1,5
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	1,56
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	1,33
Stainless steel grade 1.4529 strength class 70	V _{Rk,s}	[kN]	13	20	30	55	1,25
Stainless steel grade 1.4565 strength class 70	V _{Rk,s}	[kN]	13	20	30	55	1,56
Characteristic bending moment							
Steel grade 4.6	M _{Rk,s}	[N.m]	15	30	52	133	1,67
Steel grade 5.8	M _{Rk,s}	[N.m]	19	37	66	166	1,25
Steel grade 8.8	M _{Rk,s}	[N.m]	30	60	105	266	1,25
Steel grade 10.9	M _{Rk,s}	[N.m]	37	75	131	333	1,5
Stainless steel grade A2-70, A4-70	M _{Rk,s}	[N.m]	26	52	92	233	1,56
Stainless steel grade A4-80	M _{Rk,s}	[N.m]	30	60	105	266	1,33
Stainless steel grade 1.4529 strength class 70	M _{Rk,s}	[N.m]	26	52	92	233	1,25
Stainless steel grade 1.4565 strength class 70	M _{Rk,s}	[N.m]	26	52	92	233	1,56

Table C17: Displacements under tension and shear load

Size			M8	M10	M12	M16
Load	F	[kN]		N _{Rk} / (₂	/ғ · γм)	
	δηο	[mm]	0,36	0,34	0,35	0,77
AAC2	δ _{N∞}	[mm]	0,73	0,68	0,70	1,54
AAC2	δνο	[mm]	0,34	0,10	0,11	0,31
	δv∞	[mm]	0,5	0,15	0,16	0,45
	δηο	[mm]	0,36	0,34	0,35	0,77
AAG4	δ _{N∞}	[mm]	0,73	0,68	0,70	1,54
AAC4	δνο	[mm]	0,73	0,54	0,29	0,33
	δ _{V∞}	[mm]	1,09	0,81	0,44	0,5
	δηο	[mm]	0,07	0,04	0,05	0,07
1100	δ _{N∞}	[mm]	0,14	0,07	0,10	0,14
AAC6	δνο	[mm]	0,73	0,54	0,29	0,33
	δ _{V∞}	[mm]	1,09	0,81	0,44	0,5

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C18: β - factors for job site tests according to TR 053

Brick N°	N° 11	N° 12	N° 13
β - factor - Use conditions d/d	0,97	0,97	0,97
β - factor - Use conditions w/d	0,81	0,81	0,81
β - factor - Use conditions w/w	0,72	0,72	0,72

WB300, WB300W, WB300T	
for masonry	
Performances	Annex C 4
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

Declaration of Performance - Walraven Injection Anchor WB300 - DoP No. 23/0312-WB300 - 19 Feb. 2025 - Page 6 of 12

Table C19: Characteristic resistance under tension and shear loading WB300W with installation temperature < -10°C

Base	Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾											
material	U	se cond	itions d	/d	U	se cond	itions w	/d	Us	se cond	itions w	/w
	M8	M10	M12	M16	M8	M10	M12	M16	M8	M10	M12	M16
Brick N° 11	0,6	0,6	0,75	1,2	0,5	0,6	0,6	0,9	0,5	0,6	0,6	0,9
Brick N° 12	0,9	1,2	1,5	3,0	0,75	0,9	1,2	2,0	0,75	0,9	1,2	2,0
Brick N° 13	2,5	2,5	3,5	4,5	2,0	2,0	3,0	3,5	1,5	1,5	2,5	3,0

¹⁾ For design according TR 054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054 For $V_{Rk,s}$ see Annex C1, Table C2; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C20: Characteristic resistance under shear loading - steel failure

Size	М6	M8	M10	M12	M16	Partial safety factor γ _{Ms}
See Annex C	2 4					

Table C21: Displacements under tension and shear load

Size	M6	M8	M10	M12	M16
See Annex C 4					

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C22: β - factors for job site tests according to TR 053 WB300W with installation temperature < -10°C

Brick N°	N° 11	N° 12	N° 13
β - factor - Use conditions d/d	0,92	0,92	0,92
β - factor - Use conditions w/d	0,77	0,77	0,77
β - factor - Use conditions w/w	0,69	0,69	0,69

WB300W	
for masonry	
Performances	Annex C 5
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

Table B5: Installation parameters in solid and hollow masonry												
Base material					Bı	rick No. 1 ·	- 10					
Anchor type	Anchor type				or rod sleeve			Internal threaded socket with sleeve				
Size			M8	M10	M12	M16	M8	M10	M12			
Internal threaded socket	$d_{to}xl_{t}$	[mm]	-	-	-	-	12x80	14x80	16x80			
Sieve sleeve	Is	[mm]	85	85	85	85	85	85	85			
Sieve sieeve	ds	[mm]	15/16	15/16	15/16	20	15/16	20	20			
Nominal drill hole diameter	d_0	[mm]	15/16	15/16	15/16	20	15/16	20	20			
Diameter of cleaning brush	dь	[mm]	20±1	20±1	20±1	22±1	20±1	22±1	22±1			
Depth of the drill hole	h ₀	[mm]		9	0			90				
Effective anchorage depth	hef	[mm]		8	5			80				
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	18	9	12	14			
Torque moment	T _{inst} ≤	[Nm]				2						

Table B6: Edge distances and	spacing in solid and hollow masonry

Table B6: Edge distances and spacing in solid and hollow masonry												
Anchor rod Anchor rod												
		M8			M10, M12		M16					
Base	- Cmin	Smin II	Smin⊥	= C _{min}	Smin II	Smin⊥	= Cmin	Smin II	Smin⊥			
material 1)	C _{cr} =	S _{cr} = II	S _{Cr} ⊥ =	Cor	Sor =	S _{cr} ⊥ =	ပိ	S _{or =}	S _{cr} ⊥ =			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
Brick N° 1	128	255	255	128	255	255	128	255	255			
Brick N° 2	128	255	255	128	255	255	128	255	255			
Brick N° 3	100	373	238	100	373	238	120	373	238			
Brick N° 4	100	370	238	100	370	238	120	370	238			
Brick N° 5	100	245	110	100	245	110	120	245	110			
Brick N° 6	100	400	200	-	-	-	120	400	200			
Brick N° 7	100	235	115	100	235	115	120	235	115			
Brick N° 8	100	240	113	100	240	113	120	240	113			
Brick N° 9	100	250	248	100	250	248	120	250	248			
Brick N° 10	100	250	248	100	250	248	1-1	-	-			
	Internal threaded socket											
		М8			M10			M12				
Base material ¹⁾	C _{cr} = C _{min}	Scr II = Smin II	S _{Cr} L = S _{min} L	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	S _{cr} II = Smin II	S _{cr} ⊥ = S _{min} ⊥			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
Brick N° 1	128	255	255	128	255	255	128	255	255			
Brick N° 2	128	255	255	128	255	255	128	255	255			
Brick N° 4	100	370	238	120	370	238	120	370	238			
Brick N° 7	100	235	115	120	235	115	120	235	115			
Brick N° 8	100	240	113	120	240	113	120	240	113			
Brick N° 9	-	-	-	120	250	248	120	250	248			
Brick N° 10	100	250	248	120	250	248	120	250	248			

¹⁾ Brick N° according to Annex B 2 to B 4

WB300, WB300W, WB300T		
for masonry		
Intended use Installation parameters	Annex B 8	

Table B7:	Installation	parameters in	solid	masonry	without	sleeve
I UDIC DI.	IIIotaliation	parameters in	JUILIA	illusolli y	Without	31001

Base material				Brick No. 1 - 2						
Anchor type			Anchor rod without sleeve							
Size			M6	M8	M10	M12	M16			
Nominal drill hole diameter	d_0	[mm]	8	10	12	14	18			
Diameter of cleaning brush	d_b	[mm]	9±1	14 ^{±1}	14 ^{±1}	14 ^{±1}	20 ^{±1}			
Depth of the drill hole	h_0	[mm]	80	90						
Effective anchorage depth	h _{ef}	[mm]	80 90			0				
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18			
Torque moment	Torque moment T _{inst} ≤ [Nm]					2				

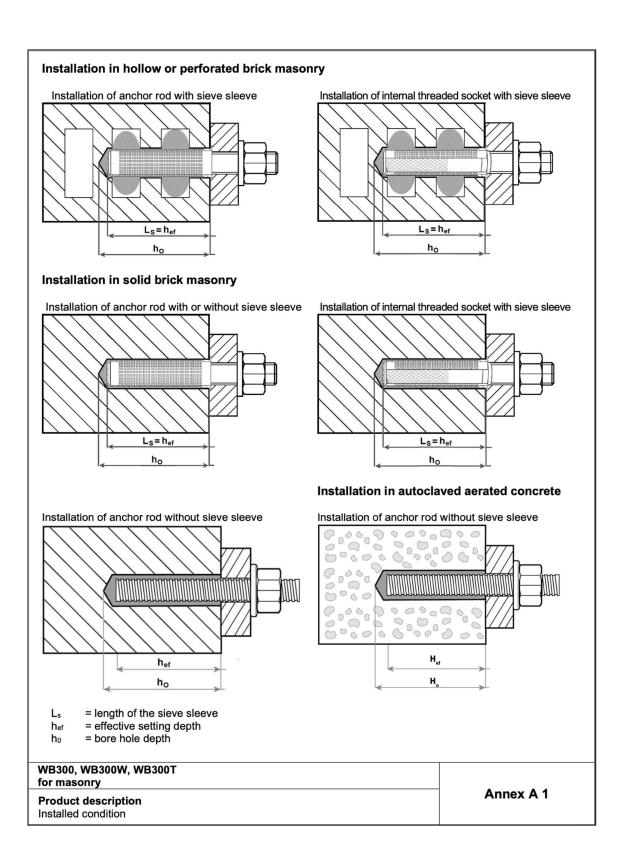
Table B8: Edge distances and spacing in solid masonry without sleeve

Anchor rod						
	M6			M8, M10, M12, M16		
Base material ¹⁾	Ccr = Cmin	Scr = Smin	S _{Cr} L = S _{min} L	Ccr = Cmin	Scr II = Smin II	S _{Cr} ⊥ = S _{min} ⊥
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Brick N° 1	120	240	240	135	270	270
Brick N° 2	120	240	240	135	270	270

¹⁾ Brick N° according to Annex B 2

Table B9: Installation parameters in autoclaved aerated concrete

Table Do. Illotaliation paramete		autoc	iavea acratea	COHOLCE			
Base material			Brick No. 11 - 13				
Anchor type				Anchor rod without sleeve			
Size	,		M8	M10	M12	M16	
Nominal drill hole diameter	d ₀	[mm]	10	12	14	18	
Diameter of	d.	[mm]	14 ^{±1}	14 ^{±1}	20±1	20±1	
cleaning brush	dь	[mm]	14-	14-	20-	20-	
Depth of the drill hole	h_0	[mm]	80		95	105	
Effective anchorage depth	hef	[mm]	7	5	90	100	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	18	
Torque moment	T _{inst} ≤	[Nm]		2	2		


Table B10: Edge distances and spacing autoclaved aerated concrete

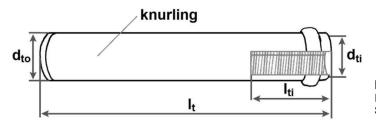
Anchor rod									
	M8, M10			M12			M16		
Base material ¹⁾	C _{cr} = C _{min}	S _{cr II} = S _{min II}	S _{cr} ⊥ = S _{min} ⊥	Ccr = Cmin	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	S _{cr II} = S _{min II}	S _{cr} ⊥ = S _{min} ⊥
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Brick N° 11	113	225	225	135	270	270	150	300	300
Brick N° 12	113	225	225	135	270	270	150	300	300
Brick N° 13	113	225	225	135	270	270	150	300	300

¹⁾ Brick N° according to Annex B 5

WB300, WB300W, WB300T	
for masonry	
Intended use Installation parameters	Annex B 9

Threaded rod M6, M8, M10, M12, M16 L 2 3 1 hef Standard commercial threaded rod with marked embedment depth

Part	Designation	Material			
Steel,	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811				
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6 ¹⁾ , 5.8, 8.8, 10.9 ²⁾ EN ISO 898-1			
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			
Stainl	ess steel				
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506			
2	Hexagon nut EN ISO 4032	According to threaded rod			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			
High	corrosion resistant steel				
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1			
2	Hexagon nut EN ISO 4032	According to threaded rod			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			


¹⁾ Only for use in Autoclaved aerated concrete

²⁾ Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

WB300, WB300W, WB300T for masonry	
 Product description Fhreaded rod and materials	Annex A 3

Declaration of Performance - Walraven Injection Anchor WB300 - DoP No. 23/0312-WB300 - 19 Feb. 2025 - Page 11 of 12

Internal threaded socket

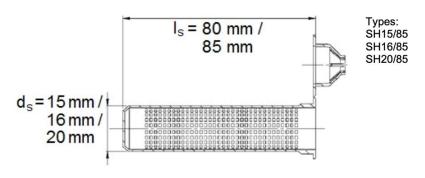

Marking: Identifying mark of the producer "m" Size of internal thread e.g. M8

Table A1: Dimensions of internal threaded socket

Internal threaded socket	Inner diameter	Outer diameter	Length of the internal thread	Total length
	d_{ti}	d _{to} [mm]	Iti [mm]	It [mm]
12 x 80	M8	12	30	80
14 x 80	M10	14	30	80
16 x 80	M12	16	30	80

Designation	Material
Internal threaded socket	strength class 5.8 EN ISO 898-1, galvanized ≥ 5 µm EN ISO 4042

Sieve sleeve

Designation	Material
Sieve sleeve	Polypropylene

WB300, WB300W, WB300T	
for masonry	
Product description	Annex A 4
Internal threaded socket and materials	
Sleeve	