

Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 23/0310 of 28/11/2024

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product WB300

WB300W WB300T

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

Manufacturer J. van Walraven Holding B.V.

Industrieweg 5 3641 RK Mijdrecht The Netherlands

Manufacturing plant Walraven Factory A1

This European Technical Assessment

contains

27 pages including 24 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation

(EU) No 305/2011, on the basis of

EAD 330499-02-0601

Bonded fasteners and bonded expansion

fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The WB300, WB300W (faster curing time), WB300T (extended curing time) with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 9
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 10, C 11
Displacements under short-term and long-term loading	See Annex C 12
Characteristic resistance for seismic performance categories C2	See Annex C 13 to C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Satisfy the requirements for performance class A1			
Resistance to fire	See Annex C 15, C 16			

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

Official Journal of the European Communities L 254 of 08.10.1996

.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

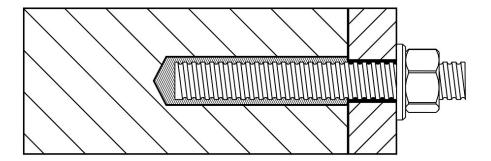
Issued in Prague on 28.11.2024

Ву

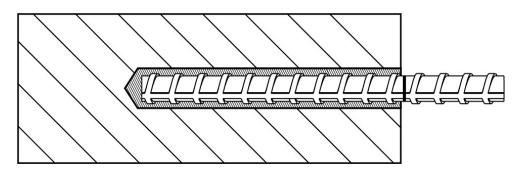
Ing. Jiří Studnička, Ph.D.Head of the Technical Assessment Body

Czech Republic

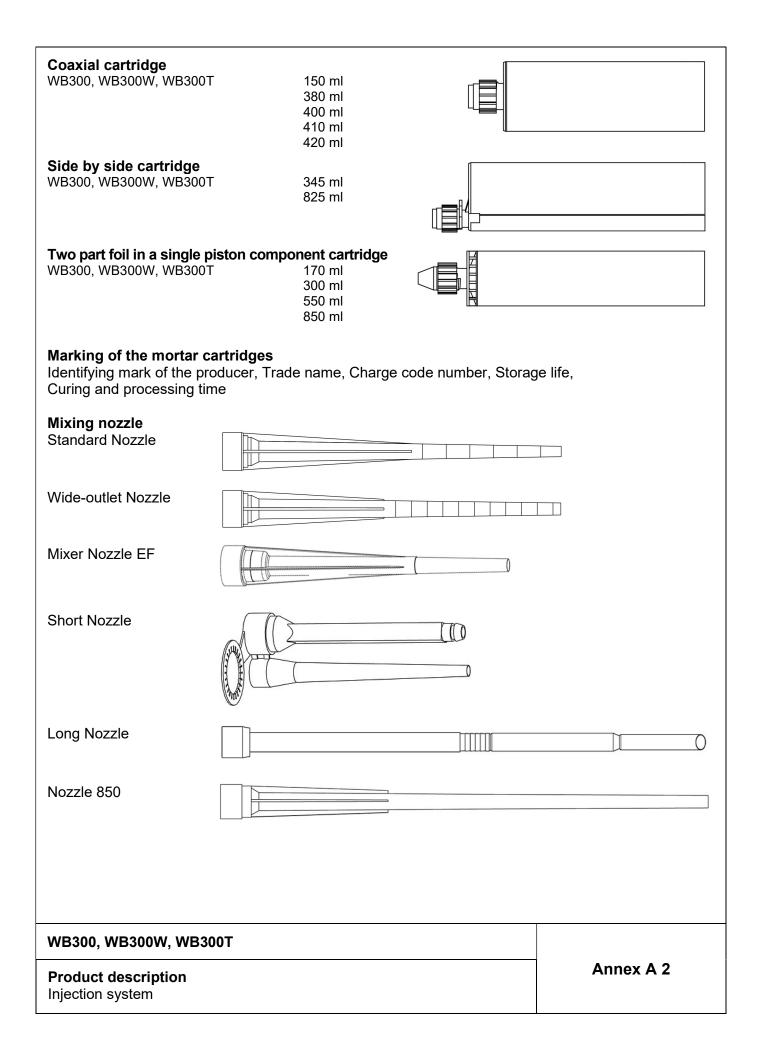
Ogentaria Assessment Political

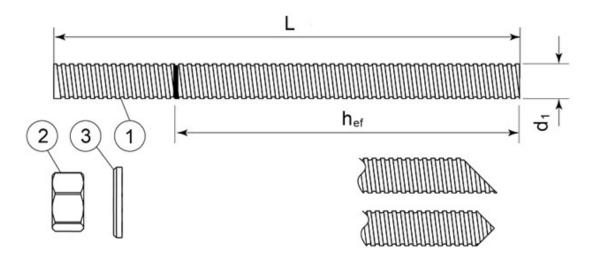

Or technické Postorial

Page 3 of 27 ETA 23/0310 issued on 28/11/2024


-

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Threaded rod


Reinforcing bar

WB300, WB300W, WB300T	
Product description	Annex A 1
Installed conditions	

Threaded rod M8, M10, M12, M16, M20, M24

Standard commercial threaded rod with marked embedment depth

Dout	Designation	Material						
Part								
	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or							
	Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or							
Steel,	Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811							
1	Anchor rod	Steel, EN 10087 or EN 10263						
	11	Property class 4.6, 4.8, 5.6, 5.8, 8.8, 10.9* EN ISO 898-1						
2	Hexagon nut	According to threaded rod, EN 20898-2						
	EN ISO 4032	,						
	Washer							
3	EN ISO 887, EN ISO 7089,	According to threaded rod						
	EN ISO 7093 or EN ISO 7094							
Stain	ess steel							
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506						
2	Hexagon nut	According to threaded rod						
	EN ISO 4032							
	Washer							
3	EN ISO 887, EN ISO 7089,	According to threaded rod						
	EN ISO 7093 or EN ISO 7094							
High	corrosion resistant steel							
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1						
2	2 Hexagon nut According to threaded rod							
	EN ISO 4032	7.000.u.i.g to unoudou rou						
	Washer							
3	EN ISO 887, EN ISO 7089,	According to threaded rod						
	EN ISO 7093 or EN ISO 7094							

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

WB300, WB300W, WB300T	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25

Standard commercial reinforcing bar with marked embedment depth

Product form Bars and de-			-coiled rods	
Class		В	С	
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 to 600		
Minimum value of $k = (f_t/f_y)_k$	$= (f_t/f_y)_k$ > 1.08 ≥ 1.1		≥ 1,15 < 1,35	
Characteristic strain at maximum for	orce ε _{uk} (%)	≥ 5,0	≥ 7,5	
Bendability		Bend/Rebend test		
Maximum deviation from nominal	Maximum deviation from nominal Nominal bar size (mm)			
mass (individual bar) (%)	≤ 8	±6,0		
	> 8			
Bond: Minimum relative rib area,	Nominal bar size (mm)	m)		
$f_{R,min}$	0,040			
	> 12	0,056		

WB300, WB300W, WB300T	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Fire exposure
- Seismic actions category C2: threaded rod size M12, M16

Base materials

- · Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- Structures subject to dry, internal conditions (all materials)
- For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.
- For applications with resistance to fire exposure, the fasteners are designed in accordance with EOTA TR 082 "Design of bonded fasteners in concrete under fire conditions"

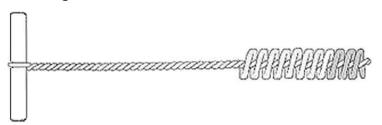
Installation:

- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

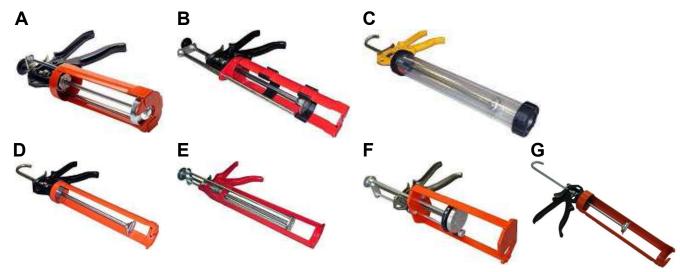
Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

WB300, WB300W, WB300T	
Intended use Specifications	Annex B 1



Heller Duster Expert hollow drill bit SDS-Plus ≤ 16mm SDS-Max ≥ 16mm


Class M vacuum Minimum flow rate 266 m³/h (74 l/s)

Cleaning brush

Applicator gun

Applicator gun	Α	В	С	D	E	F	G
Cartridge	Coaxial 380ml 400ml 410ml 420ml	Side by side 345ml	Foil capsule 170ml 300ml 550ml	Foil capsule 170ml 300ml	Coaxial 150ml	Side by side 825ml	Foil capsule 850ml

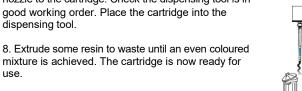
WB300, WB300W, WB300T	
Intended use Hollow drill bit system, Cleaning brush	Annex B 2
Applicator guns	

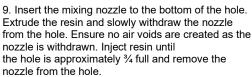
SOLID SUBSTRATE INSTALLATION METHOD

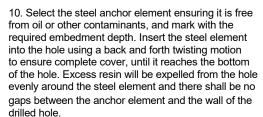
1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

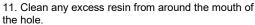
2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.

3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

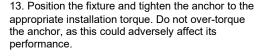

4. Repeat step 2 (blowing operation x2)


5. Repeat step 3 (brushing operation x2)

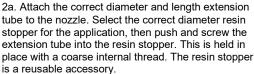

6. Repeat step 2 (blowing operation x2)


use

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and fit for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.



12. Refer to the working and loading times within the tables to determine the appropriate cure time.



DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

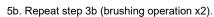
3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is

5a. Continue from step 10 under "solid substrate installation method".

DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.


2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4b. Repeat step 2b (flushing operation x2).

6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

7a. Continue from step 7 under "solid substrate installation method".

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method"

WB300, WB300W, WB300T

Intended use Installation procedure Annex B 3

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	Ød ₀	[mm]	10	12	14	18	22	26
Diameter of cleaning brush	dь	[mm]	14	14	20	20	29	29
Manual pump cleaning					h _{ef} < 3	300 mm		
Torque moment	max T _{fix}	[Nm]	10	20	40	80	120	160
Depth of drill hole for hef,min	h _{ef}	[mm]	60	60	70	80	90	96
Depth of drill hole for hef,max	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	C _{min}	[mm]	40	40	50	70	80	100
Minimum spacing	Smin	[mm]	40	40	50	70	80	100
Minimum thickness of member	h_{min}	[mm]	h _{ef} + 3	30 mm ≥ 10	00 mm		h _{ef} + 2d ₀	0

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	16	20 22*	25	30* 32
Diameter of cleaning brush	d₀	[mm]	14	14	19	22	29	40
Manual pump cleaning				h∈	_{ef} < 300 m	ım		
Depth of drill hole for hef,min	h _{ef}	[mm]	60	60	70	80	90	100
Depth of drill hole for hef,max	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	C _{min}	[mm]	40	40	50	70	80	100
Minimum spacing	Smin	[mm]	40	40	50	70	80	100
Minimum thickness of member	h_{min}	[mm]	h _{ef} + 3	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 20)

^{*} Only for hammer and dustless drilling

Table B3.1: Minimum curing time WB300

Table Do.T. William daming time v	VD000		
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	18	min +5	145
+5 to +10	10	+5 to +10	145
+10 to +20	6	+10 to +20	85
+20 to +25	5	+20 to +25	50
+25 to +30		+25 to +30	40
+30	4	+30	35

Table B3.2: Minimum curing time WB300W

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+20	90	-20 to -15 ¹⁾	110 hours
+20	35	-15 to -10 ¹⁾	55 hours
+5	10	-10 to -5	30 hours
+5	3,5	-5 to 0	9 hours
+5	2	0 to +5	125
+5 to +10	2	+5 to +10	60
+10 to +20	2	+10 to +20	40
+20 to +25	1,5	+20 to +25	20
+25 to +30	1	+25 to +30	15
+30	1	+30	10

¹⁾ characteristic values of resistance see Annex C 2 and Annex C 4

Table B3.3: Minimum curing time WB300T

Resin cartridge temperature [°C] T Work [mins]		Base material Temperature [°C]	T Load [mins]
min +10	30	min +10	5 hours
+10 to +20	15	+10 to +20	Silouis
+20 to +25	10	+20 to +25	145
+25 to +30	7,5	+25 to +30	85
+30 to +35	5	+30 to +35	50
+35 to +40	3,5	+35 to +40	40
+40 to +45	2,5	+40 to +45	35
+45	2,3	+45	12

T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

WB300, WB300W, WB300T	
Intended use Installation parameters Curing time	Annex B 4

Table C1: Design method EN 1992-4
Steel failure - Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic resistance				-	,		,	
Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			2,	00		
Steel grade 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	50		
Steel grade 5.6	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]			2,	00		
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]			1,	50		
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γMs	[-]			1,	50		
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353
Partial safety factor	γMs	[-]			1,	33		
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γMs	[-]			1,	87		
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γMs	[-]	1,60					
High corrosion resistant steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γMs	[-]	1,50					
High corrosion resistant steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γMs	[-]	1,87					

Table C2: Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistance					_				
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	
Partial safety factor	γMs	[-]	1,4						

WB300, WB300W, WB300T	
Performances Steel failure characteristic resistance	Annex C 1

Table C3: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Hammer drilling, Dustless	c drilling

Combined pullout and concrete cone t	allure in c	concrete C						
Size			М8	M10	M12	M16	M20	M24
Characteristic bond resistance in uncr			a workin	g life of 5	0 years a	ınd 100 y	ears	
Dry, wet concrete and flooded hole	τRk,ucr	[N/mm ²]	11,0	10,0	10,0	9,0	7,5	7,0
Installation safety factor								
Dry, wet concrete	γinst	[-]				,2		
Hammer drilling - flooded hole	γinst	[-]			1	,2		
Dustless drilling - flooded hole	γinst	[-]			1	,4		
Characteristic bond resistance in crac	ked conci	rete for a w	orking li	fe of 50 y	ears/			
Dry, wet concrete and flooded hole	τRk,cr	[N/mm ²]	5,0	5,0	4,5	4,0	4,0	4,0
Characteristic bond resistance in crac	ked conci	rete for a w	orking li	fe of 100	years			
Dry, wet concrete and flooded hole	τRk,cr	[N/mm ²]	4,0	4,0	3,5	3,5	3,5	3,5
Installation safety factor								
Dry, wet concrete	γinst	[-]				,2		
Hammer drilling - flooded hole	γinst	[-]			1	,2		
Dustless drilling - flooded hole	γinst	[-]			1	,4		
Factor for influence of sustained load	Ψ^0 sus	[-]			٥	75		
for a working life 50 years		ניו						
C25/			1,04					
C30/						80		
Factor for concrete C35/	- IIIa	[-]	1,12 1,15					
C40/	30	[]						
C45/	,							
C50/	/60		1,19					

Concrete cone failure			
Factor for concrete cone failure for uncr	acked concrete	$k_{ucr,N}$	11
Factor for concrete cone failure for crac	ked concrete	$k_{cr,N}$	7,7
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure								
Size			M8	M10	M12	M16	M20	M24
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}					
Spacing	Scr,sp	[mm]	2 • Ccr,sp					•

WB300, WB300W, WB300T	
Performances	Annex C 2
Hammer drilling, Dustless drilling	
Characteristic resistance for tension loads - threaded rod	

Table C4: Design method EN 1992-4
Characteristic values of resistance to tension load of threaded rod for WB300W with installation temperature < -10°C

Hammer drilling, Dustless drilling

Concrete cone failure

Combined pullout and concrete	cone failu	re in c	oncrete C		,				
Size				M8	M10	M12	M16	M20	M24
Characteristic bond resistance in	n uncrack	ed co	ncrete for	a workin	g life of 5	50 years a	and 100 y	ears	
Dry, wet concrete and flooded hole	!	τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,5	8,5	7,0	6,5
Installation safety factor									
Dry, wet concrete		γinst	[-]			1	,2		
Hammer drilling - flooded hole		γinst	[-]			1	,2		
Dustless drilling - flooded hole		γinst	[-]			1	,4		
Characteristic bond resistance in	n cracked	concr	ete for a v	vorking l	ife of 50	years			
Dry, wet concrete and flooded hole		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5	3,5	3,5
Characteristic bond resistance in	n cracked	concr	ete for a v	vorking l	ife of 100	years			
Dry, wet concrete and flooded hole		τ _{Rk,cr}	[N/mm ²]	3,5	3,5	3,0	3,0	3,0	3,0
Installation safety factor									
Dry, wet concrete		γinst	[-]			1	,2		
Hammer drilling - flooded hole		γinst	[-]			1	,2		
Dustless drilling - flooded hole		γinst	[-]			1	,4		
Factor for influence of sustained loa	ad	Ψ^0_{sus}	[-]			0	75		
for a working life 50 years		Ψ°sus	[-]			0,	,73		
	C25/30					1,	,04		
	C30/37						,08		
Factor for concrete	C35/45	ш.	[-]			1,	,12		
C40		Ψc	[-]			1,	,15		
	C45/55						,17		
	C50/60					1,	,19		

	See Annex C 2	
Splitting failure		
	See Annex C 2	

WB300W	
Performances	Annex C 3
Hammer drilling, Dustless drilling	, umox o o
Characteristic resistance for tension loads - threaded rod	

Table C5: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Hammer drilling, Dustless drilling

Combined pullout and co	ncrete cone fa	ailure in (concrete C		1	,	r	f	1
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Characteristic bond resis	stance in uncra	acked co	ncrete for	a workin	ng life of	50 years a	and 100 y	ears/	
Dry, wet concrete and floo	ded hole	τRk,ucr	[N/mm ²]	8,5	8,0	8,0	7,0	7,0	5,5
Installation safety factor									
Dry, wet concrete		γinst	[-]			1	,2		
Hammer drilling - flooded h	ole	γinst	[-]			1	,2		
Dustless drilling - flooded h	ole	γinst	[-]			1	,4		
Characteristic bond resis	tance in crack	ed conc	rete for a v	working l	life of 50	years			
Dry, wet concrete and floo	ded hole	τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,5	3,5	3,5	2,5
Characteristic bond resis	tance in crack	ed conc	rete for a v	working l	life of 100) years			
Dry, wet concrete and floo	ded hole	$ au_{Rk,cr}$	[N/mm ²]	3,0	3,0	2,5	2,5	2,5	2,0
Installation safety factor									
Dry, wet concrete		γinst	[-]	1,2					
Hammer drilling - flooded h	ole	γinst	[-]			1	,2		
Dustless drilling - flooded h	ole	γinst	[-]			1	,4		
Factor for influence of sust for a working life 50 years	ained load	ψ^0_{sus}	[-]	0,75					
C25/30						1,	04		
	C30/37						08		
Factor for concrete	C35/45	Ψc	[-]	1,12					
. 22.2. 101 001101010	C40/50	Ψ°	LJ				15		
	C45/55 C50/60						17 19		

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k ucr,N	r 1	11
Factor for concrete cone failure for cracked concrete	k cr,N	[-]	7,7
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Edge distance	C _{cr,sp}	[mm]			2 •	h _{ef}		
Spacing	Scr,sp	[mm]			2 • 0	Ccr,sp		

WB300, WB300W, WB300T	
Performances Hammor drilling Duetloog drilling	Annex C 4
Hammer drilling, Dustless drilling Characteristic resistance for tension loads - rebar	

Table C6: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar WB300W with installation temperature < -10°C

Hammer drilling, Dustless drilling

Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Characteristic bond res	stance in uncra	acked co	ncrete for						220
Dry, wet concrete and floo		τ _{Rk,ucr}	_ 1	8,0	7,0	7,5	6,0	6,0	5,0
Installation safety factor					'	•			
Dry, wet concrete		γinst	[-]			1	,2		
Hammer drilling - flooded	hole	γinst	[-]			1	,2		
Dustless drilling - flooded	hole	γinst	[-]			1	,4		
Characteristic bond res	stance in crack	ed conc	rete for a v	working l	life of 50	years			
Dry, wet concrete and floo	oded hole	τ _{Rk,cr}	[N/mm ²]	3,5	3,0	3,0	3,0	3,0	2,0
Characteristic bond res	stance in crack	ed conc	rete for a v	working l	ife of 100) years		•	
Dry, wet concrete and floo	oded hole	τ _{Rk,cr}	[N/mm ²]	2,5	2,5	2,0	2,0	2,0	2,0
Installation safety factor					•				
Dry, wet concrete		γinst	[-]			1	,2		
Hammer drilling - flooded	hole	γinst	[-]			1	,2		
Dustless drilling - flooded	hole	γinst	[-]			1	,4		
Factor for influence of sus for a working life 50 years		ψ^0_{sus}	[-]	0,75					
Factor for concrete	C25/30 C30/37 C35/45 C40/50 C45/55	Ψο	[-]	1,04 1,08 1,12 1,15 1,17 1,19					

Concrete cone failure	
See Annex C 4	

Splitting failure		
	See Annex C 4	

WB300W	
Performances	Annex C 5
Hammer drilling, Dustless drilling	7 umox • •
Characteristic resistance for tension loads - rebar	

Table C7: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Size			M8	M10	M12	M16	M20	M24
Characteristic bond resistance in uncr	acked cor	ncrete for	a workin	g life of 5	0 years a	nd 100 y	ears	
Dry, wet concrete and flooded hole	τRk,ucr	[N/mm ²]	9,5	9,0	9,0	7,5	6,5	6,0
Installation safety factor								
Dry, wet concrete	γinst	[-]				,0		
Flooded hole	γinst	[-]			1	,4		
Characteristic bond resistance in cracl	ked concr	ete for a v	vorking l	ife of 50 y	/ears			
Dry, wet concrete and flooded hole	τ _{Rk,cr}	[N/mm ²]	5,0	5,0	4,5	4,0	4,0	4,0
Characteristic bond resistance in cracl	ked concr	ete for a v	vorking l	ife of 100	years			
Dry, wet concrete and flooded hole	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	3,5	3,5	3,5	3,5
Installation safety factor								
Dry, wet concrete	γinst	[-]				,0		
Flooded hole	γinst	[-]	1,4					
Factor for influence of sustained load for a working life 50 years	ψ^0_{sus}	[-]	0,75					
C25/ C30/ C35/ Factor for concrete C40/ C45/ C50/	37 45 50 Ψ ^c 55	[-]	1,02 1,04 1,06 1,07 1,08 1,09					
Concrete cone failure								
Factor for concrete cone failure for uncracke	ed concrete	e k _{ucr,N}			1	1		
Factor for concrete cone failure for cracked	concrete	k _{cr,N}			7	,7		
Edge distance	C _{cr,N}	[mm]			1,5	5h _{ef}		
Splitting failure								
Size			M8	M10	M12	M16	M20	M24

Size		M8	M10	M12	M16	M20	M24
Edge distance	c _{cr,sp} [m	m]		2 •	h _{ef}		
Spacing	s _{cr,sp} [m	m]	2 • C _{cr,sp}				

WB300, WB300W, WB300T	
Performances	Annex C 6
Diamond core drilling	
Characteristic resistance for tension loads - threaded rod	

Table C8: Design method EN 1992-4
Characteristic values of resistance to tension load of threaded rod for WB300W with installation temperature < -10°C

Size				M8	M10	M12	M16	M20	M24
Characteristic bond resistance in u	ıncrack	ed cor	ncrete for	a workir	ng life of 5	0 years a	nd 100 y	ears	
Dry, wet concrete and flooded hole		τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,5	7,0	6,0	5,5
Installation safety factor									
Dry, wet concrete		γinst	[-]			1	,0		
Flooded hole		γinst	[-]			1	,4		
Characteristic bond resistance in c	racked			vorking	life of 50	/ears			
Dry, wet concrete and flooded hole		τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,0	3,5	3,5	3,5
Characteristic bond resistance in c	racked	concr	ete for a v	vorking	life of 100	years			
Dry, wet concrete and flooded hole		τ _{Rk,cr}	[N/mm ²]	3,5	3,5	3,0	3,0	3,0	3,0
Installation safety factor									
Dry, wet concrete		γinst	[-]				,0		
Flooded hole		γinst	[-]	1,4					
Factor for influence of sustained load		ψ^0_{sus}	[-]			0.	75		
for a working life 50 years	205/00	•							
	C25/30			1,02					
	C30/37 C35/45			1,04 1,06					
Factor for concrete	C40/50	Ψc	[-]				06 07		
	C45/55					,	07 08		
C45/33 C50/60							08		
	300/00					',			
Concrete cone failure			O A	. 0. 0					
			See Annex	K C 6					
Splitting failure									
			See Annex	к С 6				·	

WB300W	
Performances	Annex C 7
Diamond core drilling	Aimex 6 7
Characteristic resistance for tension loads - threaded rod	

Table C9: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Combined pullout and o	concrete cone fa	ailure in	concrete C	20/25						
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years										
Dry, wet concrete and flo	oded hole	τRk,ucr	[N/mm ²]	8,0	8,0	7,5	7,0	6,5	5,5	
Installation safety factor										
Dry, wet concrete		γinst	[-]			1	,0			
Flooded hole		γinst	[-]			1	,4			
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	g life of	50 years				
Dry, wet concrete and flo	oded hole	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,5	3,5	2,5	
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	ng life of	100 years)			
Dry, wet concrete and flo	oded hole	τ _{Rk,cr}	[N/mm ²]	3,0	3,0	2,5	2,5	2,5	2,5	
Installation safety factor										
Dry, wet concrete		γinst	[-]	1,0						
Flooded hole		γinst	[-]	1,4						
Factor for influence of sustained load for a working life 50 years Ψ^{0}_{sus}			[-]	0,87						
Factor for concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψο	[-]	1,02 1,04 1,06 1,07 1,08 1,09						

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[-]	11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure							
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Edge distance c _{cr,sp}	[mm]	2 • h _{ef}					
Spacing s _{cr,sp}	[mm]	2 • c _{cr,sp}					

WB300, WB300W, WB300T	
Performances	Annex C 8
Diamond core drilling	
Characteristic resistance for tension loads - rebar	

Table C10: Design method EN 1992-4
Characteristic values of resistance to tension load of rebar WB300W with installation temperature < -10°C

Combined pullout and	concrete cone fa	ailure in (concrete C	20/25						
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	g life of	50 years	and 100 y	ears		
Temperature T1: -40°C to	o +40°C	τ _{Rk,ucr}	[N/mm ²]	7,5	7,5	7,0	6,5	6,0	5,0	
Installation safety factor										
Dry, wet concrete		γinst	[-]			1	,0			
Flooded hole		γinst	[-]			1	,4			
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	g life of	50 years				
Temperature T1: -40°C to	o +40°C	τ _{Rk,cr}	[N/mm ²]	3,5	3,0	3,0	3,0	3,0	2,0	
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	g life of	100 years				
Temperature T1: -40°C to +40°C τRk,cr		[N/mm ²]	2,5	2,5	2,0	2,0	2,0	2,0		
Installation safety factor										
Dry, wet concrete		γinst	[-]	1,0						
Flooded hole		γinst	[-]	1,4						
Factor for influence of sustained load for a working life 50 years Ψ ⁰ sus			[-]	0,87						
	C25/30 C30/37 C35/45			1,02 1,04 1,06						
Factor for concrete	C40/50 C45/55 C50/60	Ψο	[-]	1,07 1,08 1,09						

Concrete cone failure	
See Annex C 8	

Splitting failure	
See Annex C 8	

WB300W	
Performances	Annex C 9
Diamond core drilling	
Characteristic resistance for tension loads - rebar	

Table C11: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71
Partial safety factor	γMs	[-]			1,	67		
Steel grade 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71
Partial safety factor	γMs	[-]			1,	25		
Steel grade 5.6	$V_{Rk,s}$	[kN]	9	15	21	39	61	88
Partial safety factor	γMs	[-]			1,	67		
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88
Partial safety factor	γMs	[-]			1,	25		
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	25		
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]			1	,5		
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]			1,	56		
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	33		
High corrosion resistant steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]	1,25					
High corrosion resistant steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor γ _{Ms} [-] 1,56								
Characteristic resistance of group of fasteners								
Ductility factor $k_7 = 1,0$ for steel with rupture e	longation	$A_5 > 8\%$	6					

Ductility factor $k_7 = 1,0$ for steel with rupture elongation $A_5 > 8\%$ Steel failure with lever arm

Size		M8	M10	M12	M16	M20	M24
Steel grade 4.6	Mº _{Rk,s} [N.m]	15	30	52	133	260	449
Partial safety factor	γMs [-]			1,	67		
Steel grade 4.8	M ^o _{Rk,s} [N.m]	15	30	52	133	260	449
Partial safety factor	γMs [-]			1,	25		
Steel grade 5.6	M ^o _{Rk,s} [N.m]	19	37	66	166	325	561
Partial safety factor	γMs [-]			1,	67		
Steel grade 5.8	M ^o _{Rk,s} [N.m]	19	37	66	166	325	561
Partial safety factor	γMs [-]			1,	25		
Steel grade 8.8	M ^o _{Rk,s} [N.m]	30	60	105	266	519	898
Partial safety factor	γMs [-]			1,	25		
Steel grade 10.9	M ^o _{Rk,s} [N.m]	37	75	131	333	649	1123
Partial safety factor	γMs [-]			1,	50		
Stainless steel grade A2-70, A4-70	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786
Partial safety factor	γMs [-]			1,	56		
Stainless steel grade A4-80	M ^o _{Rk,s} [N.m]	30	60	105	266	519	898
Partial safety factor	γMs [-]			1,	33		
High corrosion resistant steel grade 1.4529	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786
Partial safety factor	1,25						
High corrosion resistant steel grade 1.4565	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786
Partial safety factor	γMs [-]	1,56					
Concrete pryout failure							
Factor for resistance to pry-out failure	k ₈ [-]	2					

Concrete edge failure							
Size		M8	M10	M12	M16	M20	M24
Outside diameter of fastener	d _{nom} [mm]	8	10	12	16	20	24
Effective length of fastener	ℓ _f [mm]			min (hef	, 8 d _{nom})		

WB300, WB300W, WB300T	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod	Annex C 10

Table C12: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm										
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25		
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14	22	31	55	86	135		
Partial safety factor	γ̃Ms	[-]			1	,5				
Characteristic resistance of group of fasteners										
Ductility factor $k_7 = 1,0$ for steel with rupture elongation $A_5 > 8\%$										

Steel failure with lever arm										
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25			
Rebar BSt 500 S	Mº _{Rk,s} [N.m]	33	65	112	265	518	1013			
Partial safety factor	γMs [-]			1	,5					
Concrete pryout failure										
Factor for resistance to pry-out failure	k ₈ [-]			4	2					

Concrete edge failure									
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25		
Outside diameter of fastener d _{nom}	[mm]	8	10	12	16	20	25		
Effective length of fastener \$\ell_f\$	[mm]			min (hef	, 8 d _{nom})				

WB300, WB300W, WB300T	
Performances Design according to EN 1992-4	Annex C 11
Characteristic resistance for shear loads - rebar	

Table C13: Displacement of threaded rod under tension and shear load Hammer drilling, dustless drilling

			<u> </u>		<u> </u>					
Size		M8 M10 M12 M16		M16	M20	M24				
Tensic	Tension load									
Uncrad	cked concre	ete								
δ_{N0}	[mm/kN]	0,030	0,024	0,026	0,026	0,022	0,023			
δn∞	[mm/kN]	0,103	0,083	0,059	0,045	0,038	0,032			
Cracke	ed concrete									
δ_{N0}	[mm/kN]	0,056	0,044	0,058	0,063	0,044	0,035			
δ _{N∞}	[mm/kN]	0,694	0,556	0,577	0,469	0,278	0,217			
Shear	Shear load									
δνο	[mm/kN]	0,021	0,016	0,013	0,010	0,008	0,007			
δν∞	[mm/kN]	0,031	0,024	0,020	0,015	0,012	0,010			

Table C14: Displacement of threaded rod under tension and shear load Diamond core drilling

		annena	ooro arm	<u>9</u>							
Size		M8	M10	M12	M16	M20	M24				
Tensic	Tension load										
Uncrad	cked concre	ete									
δ_{N0}	[mm/kN]	0,035	0,032	0,024	0,026	0,023	0,024				
δ _{N∞}	[mm/kN]	0,106	0,086	0,063	0,048	0,038	0,031				
Cracke	ed concrete										
δηο	[mm/kN]	0,075	0,088	0,057	0,066	0,056	0,060				
δ _{N∞}	[mm/kN]	0,629	0,547	0,348	0,287	0,200	0,159				
Shear	Shear load										
δνο	[mm/kN]	0,021	0,016	0,013	0,010	0,008	0,007				
δγ∞	[mm/kN]	0,031	0,024	0,020	0,015	0,012	0,010				

Table C15: Displacement of rebar under tension and shear load Hammer drilling, dustless drilling

	riairiirier ariiirig, aastisse ariiirig									
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25			
Tensic	Tension load									
Uncrad	Uncracked concrete									
δηο	[mm/kN]	0,037	0,033	0,036	0,031	0,025	0,023			
δ _{N∞}	[mm/kN]	0,126	0,113	0,081	0,053	0,043	0,031			
Cracke	ed concrete									
δηο	[mm/kN]	0,067	0,054	0,071	0,047	0,044	0,043			
δ _{N∞}	[mm/kN]	0,820	0,630	0,660	0,372	0,272	0,266			
Shear	Shear load									
δνο	[mm/kN]	0,020	0,016	0,013	0,010	0,008	0,006			
δγ∞	[mm/kN]	0,030	0,025	0,019	0,015	0,012	0,008			

Table C16: Displacement of rebar under tension and shear load Diamond core drilling

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Tension load								
Uncracked concrete								
δηο	[mm/kN]	0,045	0,037	0,044	0,039	0,037	0,041	
δ _{N∞}	[mm/kN]	0,116	0,091	0,068	0,049	0,038	0,041	
Cracke	ed concrete							
δηο	[mm/kN]	0,107	0,092	0,075	0,075	0,057	0,050	
δ _{N∞}	[mm/kN]	0,609	0,459	0,343	0,287	0,204	0,144	
Shear load								
δ_{V0}	[mm/kN]	0,020	0,016	0,013	0,010	0,008	0,006	
δγ∞	[mm/kN]	0,030	0,025	0,019	0,015	0,012	0,008	

WB300, WB300W, WB300T	
Performances Displacement for threaded rod and rebar	Annex C 12

Table C17: Seismic performance category C2 - Hammer drilling, Dustless drilling

Size			M12	M16			
Tension load		-					
Steel failure							
Se	ee Annex C 1						
Characteristic resistance to pull-out for a working life of 50 years							
Dry, wet concrete and flooded hole	τRk,C2	[N/mm ²]	0,84	0,56			
Characteristic resistance to pull-out for	a working li	fe of 100 y	/ears				
Dry, wet concrete and flooded hole	τ _{Rk,C2}	[N/mm ²]	0,56	0,37			
Installation safety factor							
Dry, wet concrete	γinst	[-]	1,2				
Hammer drilling - flooded hole	γinst	[-]	1,2				
Dustless drilling - flooded hole	γinst	[-]	1,4				

Shear load					
Steel failure without lever arm					
Characteristic resistance grade 4.6	$V_{Rk,s,C2}$	[kN]	13,6	27,3	
Partial safety factor	γMs	[-]	1,0	67	
Characteristic resistance grade 5.8	$V_{Rk,s,C2}$	[kN]	17,0	34,1	
Partial safety factor	γMs	[-]	1,:	25	
Characteristic resistance grade 8.8	$V_{Rk,s,C2}$	[kN]	27,1	54,6	
Partial safety factor	γMs	[-]	1,3	25	
Characteristic resistance grade 10.9	$V_{Rk,s,C2}$	[kN]	Not avalified		
Partial safety factor	γMs	[-]	Not qualified		
Characteristic resistance A2-70, A4-70	$V_{Rk,s,C2}$	[kN]	23,8	47,8	
Partial safety factor	γMs	[-]	1,	56	
Characteristic resistance A4-80	$V_{Rk,s,C2}$	[kN]	27,1	54,6	
Partial safety factor	γMs	[-]	1,3	33	
Characteristic resistance 1.4529	$V_{Rk,s,C2}$	[kN]	25,7	54,4	
Partial safety factor	γMs	[-]	1,3	25	
Characteristic resistance 1.4565	$V_{Rk,s,C2}$	[kN]	25,7	54,4	
Partial safety factor	γMs	[-]	1,	56	
Characteristic shear load resistance V _{Rk,s,eq}				y following	
reduction factor for hot-dip gal	vanized co	mmercial s	tandard rods		
Reduction factor for hot-dip galvanized rods	αv,h-dg,c2	[-]	0,46	0,61	
Factor for annular gap	αgap	[-]	0.	,5	

Table C18: Displacement under tensile and shear load - seismic category C2

Size		M12	M16
δn,c2(50%)	[mm]	0,13	0,12
δn,C2(100%)	[mm]	0,24	0,17
δv,C2(50%)	[mm]	4,68	4,07
δv,C2(100%)	[mm]	8,02	6,76

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$.

Note: Rebars are not qualified for seismic design

WB300, WB300W, WB300T	
Performances	Annex C 13
Hammer drilling, Dustless drilling	7 miles G 16
Seismic performance category C2	

Table C19: Seismic performance category C2 for WB300W with installation temperature < -10°C Hammer drilling, Dustless drilling

Size			M12	M16			
Tension load							
Steel failure							
See Annex C 1							
Characteristic resistance to pull-out for a working life of 50 years							
Dry, wet concrete and flooded hole	τRk,C2	[N/mm ²]	0,79	0,53			
Characteristic resistance to pull-out for a	a working li	fe of 100	years				
Dry, wet concrete and flooded hole	τRk,C2	[N/mm ²]	0,53	0,35			
Installation safety factor							
Dry, wet concrete	γinst	[-]	1,2				
Hammer drilling - flooded hole	γinst	[-]	1,2				
Dustless drilling - flooded hole	γinst	[-]	1,4				

Shear load					
Steel failure without lever arm					
See Annex C 14					
Factor for annular gap	αgap	[-]	0,5		

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$.

Note: Rebars are not qualified for seismic design

WB300W	
Performances Hammer drilling, Dustless drilling	Annex C 14
Seismic performance category C2	

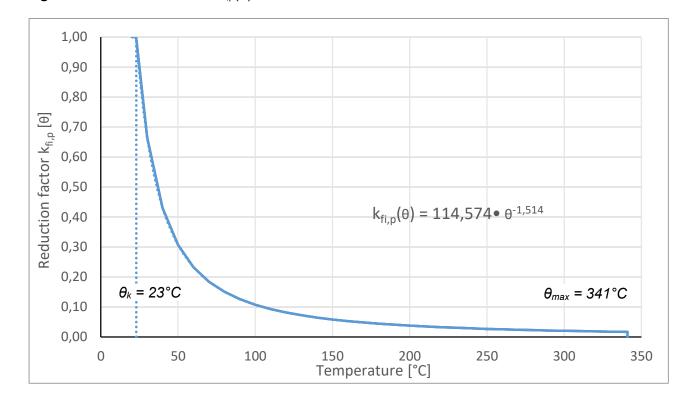
Characteristic resistance to combined pull-out and concrete failure $\tau_{Rk,fi}(\theta)$ under fire exposure for threaded rods for hammer or dustless drilling

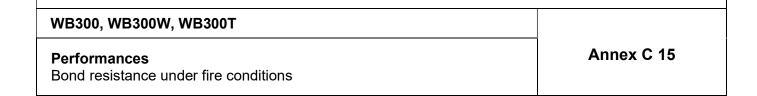
The characteristic resistance to combined pull-out and concrete failure under fire $\tau_{Rk,fi,p}(\theta)$ shall be determined according to following equation:

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) \cdot \tau_{Rk,cr}$$

where:

$$k_{fi,p}(\theta) = 1$$
 for $\theta < \theta_k$
 $k_{fi,p}(\theta) = 114,574 \cdot \theta^{-1,514} \le 1$ for $\theta \le \theta_{max}$
 $k_{fi,p}(\theta) = 0$ for $\theta > \theta_{max}$


 $\theta_k = 23^{\circ}C$ $\theta_{max} = 341^{\circ}C$


 $τ_{Rk,fi,p}$ = characteristic bond resistance for cracked concrete under fire exposure tor given temperature (θ)

 $\tau_{Rk,cr}$ = characteristic bond resistance for cracked concrete for concrete strength class C20/25

 $k_{fi,p}(\theta)$ = reduction factor for bond resistance under fire conditions

Figure C1: Reduction factor $k_{fi,p}(\theta)$

Table C22: Steel failure - Characteristic resistance under tension load under fire conditions for threaded rod

Size			M8	M10	M12	M16	M20	M24
	N _{Rk,s,fi(30)}	[kN]	0,37	0,87	1,69	3,14	4,90	7,06
Steel grade:	N _{Rk,s,fi(60)}	[kN]	0,33	0,75	1,26	2,36	3,68	5,30
4.6; 4.8; 5.6; 5.8; 8.8; 10.9	N _{Rk,s,fi(90)}	[kN]	0,26	0,58	1,10	2,04	3,19	4,59
	N _{Rk,s,fi(120)}	[kN]	0,18	0,46	0,84	1,57	2,45	3,53
Stainless steel grade:	N _{Rk,s,fi(30)}	[kN]	0,73	1,45	2,53	4,71	7,35	10,59
A2-70; A4-70; A4-80	N _{Rk,s,fi(60)}	[kN]	0,59	1,16	2,11	3,93	6,13	8,83
High corrosion resistant steel grade:	N _{Rk,s,fi(90)}	[kN]	0,44	0,93	1,69	3,14	4,90	7,06
1.4529; 1.4565	N _{Rk,s,fi(120)}	[kN]	0,37	0,81	1,35	2,51	3,92	5,65

Table C23: Steel failure - Characteristic resistance under tension load under fire conditions for rebar

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
	N _{Rk,s,fi(30)}	[kN]	0,50	1,18	2,26	4,02	6,28	9,82
Rebar BSt 500 S	N _{Rk,s,fi(60)}	[kN]	0,45	1,02	1,70	3,02	4,71	7,36
Rebai BSt 500 S	N _{Rk,s,fi(90)}	[kN]	0,35	0,79	1,47	2,61	4,08	6,38
	N _{Rk,s,fi(120)}	[kN]	0,25	0,63	1,13	2,01	3,14	4,91

Table C24: Steel failure - Characteristic resistance under shear load under fire conditions for threaded rod

Size			M8	M10	M12	M16	M20	M24
	V _{Rk,s,fi(30)}	[kN]	0,37	0,87	1,69	3,14	4,90	7,06
	V _{Rk,s,fi(60)}	[kN]	0,33	0,75	1,26	2,36	3,68	5,30
	V _{Rk,s,fi(90)}	[kN]	0,26	0,58	1,10	2,04	3,19	4,59
Steel grade:	V _{Rk,s,fi(120)}	[kN]	0,18	0,46	0,84	1,57	2,45	3,53
4.6; 4.8; 5.6; 5.8; 8.8; 10.9	M ^o Rk,s,fi(30)	[N.m]	0,4	1,1	2,6	6,7	13,0	22,5
	M ^o Rk,s,fi(60)	[N.m]	0,3	1,0	2,0	5,0	9,7	16,8
	M ^o Rk,s,fi(90)	[N.m]	0,3	0,7	1,7	4,3	8,4	14,6
	M ^o Rk,s,fi(120)	[N.m]	0,2	0,6	1,3	3,3	6,5	11,2
	$V_{Rk,s,fi(30)}$	[kN]	0,73	1,45	2,53	4,71	7,35	10,59
	V _{Rk,s,fi(60)}	[kN]	0,59	1,16	2,11	3,93	6,13	8,83
Stainless steel grade:	V _{Rk,s,fi(90)}	[kN]	0,44	0,93	1,69	3,14	4,90	7,06
A2-70; A4-70; A4-80	V _{Rk,s,fi(120)}	[kN]	0,37	0,81	1,35	2,51	3,92	5,65
High corrosion resistant steel grade:	M ^o Rk,s,fi(30)	[N.m]	0,7	1,9	3,9	10,0	19,5	33,7
1.4529; 1.4565	M ^o Rk,s,fi(60)	[N.m]	0,6	1,5	3,3	8,3	16,2	28,1
	M ^o Rk,s,fi(90)	[N.m]	0,4	1,2	2,6	6,7	13,0	22,5
	M ^o Rk,s,fi(120)	[N.m]	0,4	1,0	2,1	5,3	10,4	18,0

Table C25: Steel failure - Characteristic resistance under shear load under fire conditions for rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Rebar BSt 500 S	V _{Rk,s,fi(30)}	[kN]	0,50	1,18	2,26	4,02	6,28	9,82
	V _{Rk,s,fi(60)}	[kN]	0,45	1,02	1,70	3,02	4,71	7,36
	$V_{Rk,s,fi(90)}$	[kN]	0,35	0,79	1,47	2,61	4,08	6,38
	V _{Rk,s,fi(120)}	[kN]	0,25	0,63	1,13	2,01	3,14	4,91
	Mo _{Rk,s,fi(30)}	[N.m]	0,6	1,8	4,1	9,7	18,9	36,8
	M ^o Rk,s,fi(60)	[N.m]	0,5	1,5	3,1	7,2	14,1	27,6
	Mo _{Rk,s,fi(90)}	[N.m]	0,4	1,2	2,6	6,3	12,3	23,9
	M ^o Rk,s,fi(120)	[N.m]	0,3	0,9	2,0	4,8	9,4	18,4

WB300, WB300W, WB300T	
Performances Bond resistance under fire conditions	Annex C 16