WDI2L Drop-in Anchors

Standard drop-in anchor for multiple use for non-structural applications

Anchor types

WDI2L M6x25 WDI2L M8x30 WDI2L M10x40 WDI2L M12x50 WDI2L M16x65

Features and benefits

- European Technical Assessment according to EAD 330747-00-0601 (May 2018) for fasteners for use in concrete for redundant non-structural systems.
- European Technical Assessment according to EAD 330232-00-0601 (October 2016) for fasteners for use in non-cracked concrete.

Approvals and certificates

- European Technical Assessment
- European Technical Assessment
- Fire Test Report

Suitable base materials

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016,
- Strength classes C12/15 to C50/60 according to EN 206-1:2013+A1:2016
- Cracked or uncracked concrete,
- Fire-exposed concrete C20/25 to C50/60

lip for flush anchor setting at any hole depth.

■ The WDI2L drop-in anchors are easy to install and

versatile deformation-controlled anchors for medium

loads. They are approved for multiple use for non-

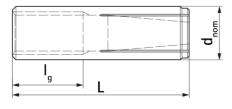
structural applications in cracked and non-cracked

concrete. Lipped drop-in anchors feature a collar with a

- Simple and quick installation procedure
- Medium load capacity
- Fire resistance class R30-R120 for design of anchorages under exposure to fire
- Collar with a lip for flush anchor setting at any hole depth

ETA-22/0630, 30 September 2022 ETA-22/0629, 30 January 2025 ETA-22/0629, 30 January 2025

Typical applications

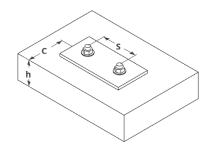

- Rail and pipe support systems
- Suspended rail installations
- Ventilation systems and ducts
- Curtain walls
- Racking
- Machinery

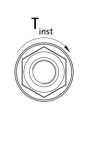
Product details

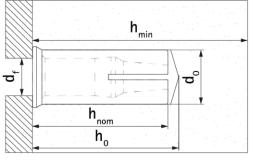
Article	Description	Size	Length	External diameter	Inner thread length	
		[-]	[mm]	d _{nom} [mm]	l _g [mm]	
6103310625	WDI2L M6x25	M6	25	8	10	
6103310830	WDI2L M8x30	M8	30	10	13	
6103311040	WDI2L M10x40	M10	40	12	17	
6103311250	WDI2L M12x50	M12	50	15	21	
6103311665	WDI2L M16x65	M16	65	20	27	

Packaging details

Article	Description	F	Pack 1	Pack 2		
Article	rticle Description		EAN13	[pcs]	EAN13	
6103310625	WDI2L M6x25	100	8719942156691	3200	8719942156707	
6103310830	WDI2L M8x30	100	8719942106528	1600	8719942106535	
6103311040	WDI2L M10x40	50	8719942156776	800	8719942156783	
6103311250	WDI2L M12x50	50	8719942156813	400	8719942156820	
6103311665	WDI2L M16x65	25	8719942156844	200	8719942156851	

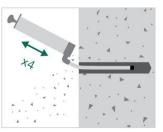

Mechanical properties

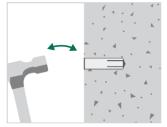

Anchor Type	WDI2L
Material	Carbon steel, zinc plated ≥ 5 µm ISO 4042 Zn5/An/T0
Fastener screw or threaded rod material	the bolt or threaded rod to be used shall be property class 4.6, 4.8, 5.6, 5.8, 6.8 or 8.8 according to ISO 898-1

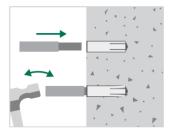


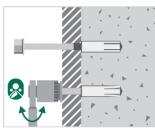
Installation parameters for concrete

Anchor Type	WDI2L						
Anchor size			M6	M8	M10	M12	M16
Anchor length	L	[mm]	25	30	40	50	65
Drill hole diameter	d ₀	[mm]	8	10	12	15	20
Depth of drill hole	h₀	[mm]	27	33	43	54	70
Nominal embedment depth	h_{nom}	[mm]	25	30	40	50	65
Effective anchorage depth	hef	[mm]	25	30	40	50	65
Minimum screwing depth	l _{s,min}	[mm]	6	8	10	12	16
Maximum screwing depth	I _{s,max}	[mm]	10	13	17	21	27
Installation torque	Tinst	[Nm]	4	11	17	38	60
Fixture clearance hole diam. ≤	df	[mm]	7	9	12	14	18
Minimum concrete member thickness	h _{min}	[mm]	100	100	100	100	130
Minimum edge distance	Cmin	[mm]	105	105	140	175	230
Minimum anchor spacing	S_{min}	[mm]	60	60	80	100	130








Instructions for installation in concrete

Recommended loads in C20/25 non-cracked concrete for single anchors¹⁾

Anchor Type					WDI2L		
Anchor size			M6	M8	M10	M12	M16
Recommended tension load	Nrec	[kN]	2.44	3.21	4.23	5.92	8.77
Recommended shear load	Nrec	[kN]	2.93	3.85	<u>5.20</u>	8.28	<u>18.57</u>

Single anchors are anchors not affected by concrete edge and anchor spacing influence.
Recommended load includes partial safety factor and an overall partial safety factor for action of 1.4. The partial safety factor for action depends on the type of loading and shall be taken from national regulations. All anchor failure modes and the entire relevant product European Technical Assessment must be considered for anchor design.

Values <u>underlined and in italics</u> show steel failure, **bold** values indicate concrete failure and other indicate pull out failure.

Recommended loads for redundant non-structural systems in concrete for single anchors¹⁾

Anchor Type			WDI2L					
Anchor size			M6	M8	M10	M12	M16	
Concrete C12/C15								
Recommended load in all directions	Frec	[kN]	0.59	1.19	1.36	2.04	3.06	
Concrete C20/25 to C50/C60								
Recommended load in all directions	Frec	[kN]	0.79	1.19	1.70	2.55	4.08	
Characteristic edge distance	Ccr	[mm]	40	45	60	75	100	
Characteristic anchor spacing distance	S _{cr}	[mm]	75	90	120	150	195	

1) Single anchors are anchors not affected by concrete edge and anchor spacing influence. 2) Recommended load includes partial safety factor and an overall partial safety factor for action of 1.4. The partial safety factor for action depends on the type of loading and shall be taken from national regulations. All anchor failure modes and the entire relevant product European Technical Assessment must be considered for anchor design.

Characteristic values of resistance under fire exposure in C20/25-C50/C60 concrete¹⁾

Anchor Type				WDI2L								
Anchor size				M6	M8	M10	M12	M16				
All load direc	ctions											
R30				0.2	0.4	0.9	1.7	3.1				
R60	Characteristic	F	[LNI]	0.2	0.3	0.8	1.3	2.4				
R90	resistance	F _{Rk,fi}	FRk,fi	I RK,TI	I RK,TI	F RK,fi	[kN]	0.1	0.3	0.6	1.1	2.0
R120				0.1	0.2	0.5	0.8	1.6				
D20 D120	Spacing distance	S _{cr,fi}	[mm]			4 x h _{ef}						
R30-R120	Edge distance	Ccr,fi	[mm]			2 x h _{ef} ²⁾						

1) In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended

2) If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c ≥ 300 mm

The definition and requirements of redundant non-structural systems

The definition of multiple use according to the Member States is given in CEN / TR 17079. In the absence of a definition by a Member State the following default values may be taken:

Minimum number of fixing points	Minimum number of anchors per fixing point	Maximum design value of actions per fixing point		
[n ₁]	[n ₂]	[n ₃]		
3	1	2.0 kN		
4	1	3.0 kN		

The maximum design value of actions per fixing point might be increased if in the design it is shown that the requirements on the strength and stiffness of the fixture in the serviceability and ultimate states after the failure of one anchor are fulfilled.

Design method for anchorages for redundant non-structural systems

The design of the fixture is such that, in the case of excessive slip or failure of one anchor, the load can be transmitted to neighbouring anchors without significantly violating the requirements on the fixture in the serviceability and ultimate limit state.

For example the design of the fixture may specify the number n_1 of fixing points to fasten the fixture and the number n_2 of anchors per fixing point. Furthermore by specifying the design value of actions N_{Sd} on a fixing point to a value $\leq n_3$ (kN) up to which the strength and stiffness of the fixture are fulfilled and the load transfer in the case of excessive slip or failure of one anchor need not to be taken into account in the design of the fixture.

